Motion sensing on vessels operating in sea ice: A local monitoring system for transit and stationkeeping operations under the influence of sea ice
The diminishing sea ice in the Arctic and Antarctic could lead to a higher number of ship operations in these areas, such as cargo transit, resource exploration, fishing, and tourism. However, despite the sea ice reduction, sea ice remains the predominant risk during ship operations. Due to the remo...
Published in: | Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology |
---|---|
Main Author: | |
Other Authors: | , , , |
Format: | Doctoral or Postdoctoral Thesis |
Language: | English |
Published: |
NTNU
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/11250/2611143 |
id |
ftntnutrondheimi:oai:ntnuopen.ntnu.no:11250/2611143 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
NTNU Open Archive (Norwegian University of Science and Technology) |
op_collection_id |
ftntnutrondheimi |
language |
English |
description |
The diminishing sea ice in the Arctic and Antarctic could lead to a higher number of ship operations in these areas, such as cargo transit, resource exploration, fishing, and tourism. However, despite the sea ice reduction, sea ice remains the predominant risk during ship operations. Due to the remoteness and fragility of the polar regions, accidents are difficult to handle and could have devastating effects on the local ecosystem. Therefore, continuous assessing of the prevailing ice conditions is essential to operating vessels. Individual sensor systems, called ice monitoring systems, provide the necessary information for the ice condition assessment, and by giving early warnings, these systems reduce the risk of accidents. A reliable ice observer system employs several technologies for ice monitoring such as optical cameras, radar systems, drift buoys, and hull strain measurements. Each additional technology increases the chance of early detection of dangerous ice conditions, and additionally adds redundancies to the overall system. The aim of this thesis was to present and validate an applicable ice monitoring system that can increase the safety for vessels operating in polar regions. This thesis presents a series of studies, presented as a collection of journal papers, that lead to an on-board motion sensing based ice monitoring system for ships, which bases on distributed measurements of ice-induced vibrations in the ship’s hull. The results of this thesis are based on field data collected during four Arctic cruises performed between 2015 and 2017. An initial study established a relationship between the prevailing ice conditions and ice-induced vibrations in the ship’s hull. A detailed frequency analysis of ice-induced vibrations concluded that accelerometers in the hull can provide information about the acting ice breaking mechanism, ice conditions around the vessel, and the location of ship-ice interaction along the hull. Two further studies established and validated the application of hull ... |
author2 |
Skjetne, Roger Sørensen, Asgeir Johan Løset, Sveinung Blanke, Mogens |
format |
Doctoral or Postdoctoral Thesis |
author |
Heyn, Hans-Martin |
spellingShingle |
Heyn, Hans-Martin Motion sensing on vessels operating in sea ice: A local monitoring system for transit and stationkeeping operations under the influence of sea ice |
author_facet |
Heyn, Hans-Martin |
author_sort |
Heyn, Hans-Martin |
title |
Motion sensing on vessels operating in sea ice: A local monitoring system for transit and stationkeeping operations under the influence of sea ice |
title_short |
Motion sensing on vessels operating in sea ice: A local monitoring system for transit and stationkeeping operations under the influence of sea ice |
title_full |
Motion sensing on vessels operating in sea ice: A local monitoring system for transit and stationkeeping operations under the influence of sea ice |
title_fullStr |
Motion sensing on vessels operating in sea ice: A local monitoring system for transit and stationkeeping operations under the influence of sea ice |
title_full_unstemmed |
Motion sensing on vessels operating in sea ice: A local monitoring system for transit and stationkeeping operations under the influence of sea ice |
title_sort |
motion sensing on vessels operating in sea ice: a local monitoring system for transit and stationkeeping operations under the influence of sea ice |
publisher |
NTNU |
publishDate |
2019 |
url |
http://hdl.handle.net/11250/2611143 |
geographic |
Arctic Antarctic |
geographic_facet |
Arctic Antarctic |
genre |
Antarc* Antarctic Arctic Arctic Sea ice |
genre_facet |
Antarc* Antarctic Arctic Arctic Sea ice |
op_relation |
Doctoral theses at NTNU;2019: 138 Paper 1: Heyn, Hans-Martin; Knoche, Martin; Zhang, Qin; Skjetne, Roger. A system for automated vision-based sea-ice concentration detection and floe-size distribution indication from an icebreaker. I: ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering - Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology, Trondheim, Norway, June 25–30, 2017. ASME Press 2017 Not included due to copyright restrictions. Available at https://doi.org/10.1115/OMAE2017-61822 Paper 2: Heyn, Hans-Martin; Skjetne, Roger; Scibilia, Francesco. Distributed sensing of loads acting against the hull of a stationkeeping vessel in ice. I: ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering - Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology. ASME Press 2018 ISBN Not included due to copyright restrictions. Available at http://dx.doi.org/10.1115/OMAE2018-78579 Paper 3: Heyn, Hans-Martin; Skjetne, Roger. Time-frequency analysis of acceleration data from ship-ice interaction events. Cold Regions Science and Technology 2018 ;Volum 156. s. 61-74. Paper 4: Heyn, Hans-Martin; Blanke, Mogens; Skjetne, Roger. Ice condition assessment using onboard accelerometers and statistical change detection. IEEE Journal of Oceanic Engineering 2019 s. - © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Paper 5: Heyn, Hans-Martin; Skjetne, Roger; Nord, Torodd Skjerve. Fast onboard detection of ice drift changes under stationkeeping in ice. This article is awaiting publication and is therefore not included. urn:isbn:978-82-326-3875-8 urn:issn:1503-8181 http://hdl.handle.net/11250/2611143 |
op_doi |
https://doi.org/10.1115/OMAE2017-6182210.1115/OMAE2018-78579 |
container_title |
Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology |
_version_ |
1772810019604004864 |
spelling |
ftntnutrondheimi:oai:ntnuopen.ntnu.no:11250/2611143 2023-07-30T03:59:16+02:00 Motion sensing on vessels operating in sea ice: A local monitoring system for transit and stationkeeping operations under the influence of sea ice Heyn, Hans-Martin Skjetne, Roger Sørensen, Asgeir Johan Løset, Sveinung Blanke, Mogens 2019 application/pdf http://hdl.handle.net/11250/2611143 eng eng NTNU Doctoral theses at NTNU;2019: 138 Paper 1: Heyn, Hans-Martin; Knoche, Martin; Zhang, Qin; Skjetne, Roger. A system for automated vision-based sea-ice concentration detection and floe-size distribution indication from an icebreaker. I: ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering - Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology, Trondheim, Norway, June 25–30, 2017. ASME Press 2017 Not included due to copyright restrictions. Available at https://doi.org/10.1115/OMAE2017-61822 Paper 2: Heyn, Hans-Martin; Skjetne, Roger; Scibilia, Francesco. Distributed sensing of loads acting against the hull of a stationkeeping vessel in ice. I: ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering - Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology. ASME Press 2018 ISBN Not included due to copyright restrictions. Available at http://dx.doi.org/10.1115/OMAE2018-78579 Paper 3: Heyn, Hans-Martin; Skjetne, Roger. Time-frequency analysis of acceleration data from ship-ice interaction events. Cold Regions Science and Technology 2018 ;Volum 156. s. 61-74. Paper 4: Heyn, Hans-Martin; Blanke, Mogens; Skjetne, Roger. Ice condition assessment using onboard accelerometers and statistical change detection. IEEE Journal of Oceanic Engineering 2019 s. - © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Paper 5: Heyn, Hans-Martin; Skjetne, Roger; Nord, Torodd Skjerve. Fast onboard detection of ice drift changes under stationkeeping in ice. This article is awaiting publication and is therefore not included. urn:isbn:978-82-326-3875-8 urn:issn:1503-8181 http://hdl.handle.net/11250/2611143 Doctoral thesis 2019 ftntnutrondheimi https://doi.org/10.1115/OMAE2017-6182210.1115/OMAE2018-78579 2023-07-12T22:46:07Z The diminishing sea ice in the Arctic and Antarctic could lead to a higher number of ship operations in these areas, such as cargo transit, resource exploration, fishing, and tourism. However, despite the sea ice reduction, sea ice remains the predominant risk during ship operations. Due to the remoteness and fragility of the polar regions, accidents are difficult to handle and could have devastating effects on the local ecosystem. Therefore, continuous assessing of the prevailing ice conditions is essential to operating vessels. Individual sensor systems, called ice monitoring systems, provide the necessary information for the ice condition assessment, and by giving early warnings, these systems reduce the risk of accidents. A reliable ice observer system employs several technologies for ice monitoring such as optical cameras, radar systems, drift buoys, and hull strain measurements. Each additional technology increases the chance of early detection of dangerous ice conditions, and additionally adds redundancies to the overall system. The aim of this thesis was to present and validate an applicable ice monitoring system that can increase the safety for vessels operating in polar regions. This thesis presents a series of studies, presented as a collection of journal papers, that lead to an on-board motion sensing based ice monitoring system for ships, which bases on distributed measurements of ice-induced vibrations in the ship’s hull. The results of this thesis are based on field data collected during four Arctic cruises performed between 2015 and 2017. An initial study established a relationship between the prevailing ice conditions and ice-induced vibrations in the ship’s hull. A detailed frequency analysis of ice-induced vibrations concluded that accelerometers in the hull can provide information about the acting ice breaking mechanism, ice conditions around the vessel, and the location of ship-ice interaction along the hull. Two further studies established and validated the application of hull ... Doctoral or Postdoctoral Thesis Antarc* Antarctic Arctic Arctic Sea ice NTNU Open Archive (Norwegian University of Science and Technology) Arctic Antarctic Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology |