Thrust allocation for DP in ice

The commercial industry has initiated work on how to make it feasible to enter the Arctic seas. Ice loads affects most aspects of the Arctic operation, and the marine crafts must be able to handle them all. The DP control system, and thus the thrust allocation, is not designed to handle ice loads an...

Full description

Bibliographic Details
Main Author: Wold, Henrik Emil
Other Authors: Imsland, Lars, Kjerstad, Oivind Kåre, Skjetne, Roger, Norges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for teknisk kybernetikk
Format: Master Thesis
Language:English
Published: Institutt for teknisk kybernetikk 2013
Subjects:
Online Access:http://hdl.handle.net/11250/261003
id ftntnutrondheimi:oai:ntnuopen.ntnu.no:11250/261003
record_format openpolar
spelling ftntnutrondheimi:oai:ntnuopen.ntnu.no:11250/261003 2023-05-15T15:03:55+02:00 Thrust allocation for DP in ice Wold, Henrik Emil Imsland, Lars Kjerstad, Oivind Kåre Skjetne, Roger Norges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for teknisk kybernetikk 2013 http://hdl.handle.net/11250/261003 eng eng Institutt for teknisk kybernetikk 649597 ntnudaim:8758 http://hdl.handle.net/11250/261003 110 Master thesis 2013 ftntnutrondheimi 2019-09-17T06:49:49Z The commercial industry has initiated work on how to make it feasible to enter the Arctic seas. Ice loads affects most aspects of the Arctic operation, and the marine crafts must be able to handle them all. The DP control system, and thus the thrust allocation, is not designed to handle ice loads and will not work properly \cite{Moran}. The main purpose of this master thesis is to enhance the thrust allocation for handling ice loads. This is done by including thruster dynamics and adding thruster ice clearance by thruster wake. When the ice loads are too high for the DP system to handle, a prioritization of the degrees of freedom is included to achieve predictable degradation of performance. To predict possible drift-offs, energy analysis will be used to investigate if the control forces integrated over time contain enough energy to withstand the ice loads.The thrust allocation is based on numerical optimization and implemented in $Matlab$. To make the thrust allocation more realistic, thruster dynamics are added. The first method is to low-pass filter the control forces, and the second is to add restrictions on the change of control forces. To clear the ice away from the hull, thruster ice clearance is implemented. The first solution is to let the algorithm calculate the azimuth angles within predefined sectors, and secondly to force the azimuth thrusters to follow predefined references in control forces and azimuth angles.A case study is done to investigate the performance of the thrust allocation algorithm, where towing tank measurement data from CIV Arctic is used as input. To measure the performance of the thrust allocation, the magnitude of the slack term, $\bm{s}^\top \bm{Q} \bm{s}$, gives a first impression. For further investigation, the error between the forces and moments from the ice loads and the achieved forces and moments from the thrust allocation is used. The results from the case study indicated that when the ice loads were high, the prioritization of degrees of freedom was followed. Both with and without thruster dynamics the error in produced thrust was less than 8 [\%] for small ice conditions, but increased rapidly for 1.2 [m] of ice. The thruster dynamics did not increase the error significantly, except an increase in yaw error for light ice conditions when the low-pass filter was applied. By adding thruster ice clearance, the error in produced thrust increased. Corresponding results were found for the energy considerations. The chosen thrust allocation algorithm gave satisfactory results. By decreasing the ice concentrations, for instance by using ice management, the performance was improved. Adding restrictions on the change of control forces was found to be the best way of including thruster dynamics, because then the restrictions were implicit in the thrust allocation algorithm. Two solutions were also proposed for implementing thruster ice clearance. By letting the thrust allocation find the azimuth angles, the performance of the algorithm was better than by forcing the control forces and azimuth angles to follow predefined references. In spite of this, the second solution was found to be the best in practice because the vessel operator has more control over the thrusters. Some recommendations for future work are to include all the components of the DP control system, do a more advanced implementation of the thruster dynamics and a more detailed energy analysis. Master Thesis Arctic NTNU Open Archive (Norwegian University of Science and Technology) Arctic
institution Open Polar
collection NTNU Open Archive (Norwegian University of Science and Technology)
op_collection_id ftntnutrondheimi
language English
description The commercial industry has initiated work on how to make it feasible to enter the Arctic seas. Ice loads affects most aspects of the Arctic operation, and the marine crafts must be able to handle them all. The DP control system, and thus the thrust allocation, is not designed to handle ice loads and will not work properly \cite{Moran}. The main purpose of this master thesis is to enhance the thrust allocation for handling ice loads. This is done by including thruster dynamics and adding thruster ice clearance by thruster wake. When the ice loads are too high for the DP system to handle, a prioritization of the degrees of freedom is included to achieve predictable degradation of performance. To predict possible drift-offs, energy analysis will be used to investigate if the control forces integrated over time contain enough energy to withstand the ice loads.The thrust allocation is based on numerical optimization and implemented in $Matlab$. To make the thrust allocation more realistic, thruster dynamics are added. The first method is to low-pass filter the control forces, and the second is to add restrictions on the change of control forces. To clear the ice away from the hull, thruster ice clearance is implemented. The first solution is to let the algorithm calculate the azimuth angles within predefined sectors, and secondly to force the azimuth thrusters to follow predefined references in control forces and azimuth angles.A case study is done to investigate the performance of the thrust allocation algorithm, where towing tank measurement data from CIV Arctic is used as input. To measure the performance of the thrust allocation, the magnitude of the slack term, $\bm{s}^\top \bm{Q} \bm{s}$, gives a first impression. For further investigation, the error between the forces and moments from the ice loads and the achieved forces and moments from the thrust allocation is used. The results from the case study indicated that when the ice loads were high, the prioritization of degrees of freedom was followed. Both with and without thruster dynamics the error in produced thrust was less than 8 [\%] for small ice conditions, but increased rapidly for 1.2 [m] of ice. The thruster dynamics did not increase the error significantly, except an increase in yaw error for light ice conditions when the low-pass filter was applied. By adding thruster ice clearance, the error in produced thrust increased. Corresponding results were found for the energy considerations. The chosen thrust allocation algorithm gave satisfactory results. By decreasing the ice concentrations, for instance by using ice management, the performance was improved. Adding restrictions on the change of control forces was found to be the best way of including thruster dynamics, because then the restrictions were implicit in the thrust allocation algorithm. Two solutions were also proposed for implementing thruster ice clearance. By letting the thrust allocation find the azimuth angles, the performance of the algorithm was better than by forcing the control forces and azimuth angles to follow predefined references. In spite of this, the second solution was found to be the best in practice because the vessel operator has more control over the thrusters. Some recommendations for future work are to include all the components of the DP control system, do a more advanced implementation of the thruster dynamics and a more detailed energy analysis.
author2 Imsland, Lars
Kjerstad, Oivind Kåre
Skjetne, Roger
Norges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for teknisk kybernetikk
format Master Thesis
author Wold, Henrik Emil
spellingShingle Wold, Henrik Emil
Thrust allocation for DP in ice
author_facet Wold, Henrik Emil
author_sort Wold, Henrik Emil
title Thrust allocation for DP in ice
title_short Thrust allocation for DP in ice
title_full Thrust allocation for DP in ice
title_fullStr Thrust allocation for DP in ice
title_full_unstemmed Thrust allocation for DP in ice
title_sort thrust allocation for dp in ice
publisher Institutt for teknisk kybernetikk
publishDate 2013
url http://hdl.handle.net/11250/261003
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_source 110
op_relation 649597
ntnudaim:8758
http://hdl.handle.net/11250/261003
_version_ 1766335765922447360