UAV/UAS path planning for ice management information gathering

The key objective of this work is the proposition of the path planning strategy for unmanned aerial vehicle (UAV) intended for information gathering in Arctic environments / ice-infested regions. Two different path planning strategies are considered; one for analysis of the surveillance area defined a...

Full description

Bibliographic Details
Main Author: Stalmakou, Artsiom
Other Authors: Imsland, Lars, Norges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for teknisk kybernetikk
Format: Master Thesis
Language:English
Published: Institutt for teknisk kybernetikk 2011
Subjects:
Online Access:http://hdl.handle.net/11250/260346
Description
Summary:The key objective of this work is the proposition of the path planning strategy for unmanned aerial vehicle (UAV) intended for information gathering in Arctic environments / ice-infested regions. Two different path planning strategies are considered; one for analysis of the surveillance area defined as a grid and the other for analysis of the surveillance area defined as a sector. The mixed integer linear programming (MILP), YALMIP modeling language and GUROBI optimizer are used for formulation and solution of the path planning optimization problems. Furthermore, both path planning strategies are tested for the cases of constant and variable ice flow, respectively; the following are investigated in each simulation case: flight path of the UAV, coverage of the surveillance area, speed and acceleration of the UAV and the solver-time. Moreover, throughout this work only a planar motion is considered, with one single UAV used in each simulation case.