Nanomekanisk prøving av stål: Er mindre alltid sterkere?

Gjennom dette arbeidet, er nanomekaniske kompresjonsegenskaper undersøkt for tre forskjellige materialer: To stål legeringer og et renjern. Pillarer av varierende størrelse, fra diameter 100nm til 2um, er fabrikkert ved bruk av FIB (Focused Ion Beam) i NTNU nanolab, etterfulgt av kompresjonstesting....

Full description

Bibliographic Details
Main Author: Haugen, Veronica Gausel
Other Authors: Thaulow, Christian, Akselsen, Odd Magne, Norges teknisk-naturvitenskapelige universitet, Fakultet for ingeniørvitenskap og teknologi, Institutt for produktutvikling og materialer
Format: Master Thesis
Language:Norwegian
Published: Institutt for produktutvikling og materialer 2012
Subjects:
Online Access:http://hdl.handle.net/11250/241608
id ftntnutrondheimi:oai:ntnuopen.ntnu.no:11250/241608
record_format openpolar
institution Open Polar
collection NTNU Open Archive (Norwegian University of Science and Technology)
op_collection_id ftntnutrondheimi
language Norwegian
topic ntnudaim:7039
MIPROD Produktutvikling og produksjon
Produktutvikling og materialer
spellingShingle ntnudaim:7039
MIPROD Produktutvikling og produksjon
Produktutvikling og materialer
Haugen, Veronica Gausel
Nanomekanisk prøving av stål: Er mindre alltid sterkere?
topic_facet ntnudaim:7039
MIPROD Produktutvikling og produksjon
Produktutvikling og materialer
description Gjennom dette arbeidet, er nanomekaniske kompresjonsegenskaper undersøkt for tre forskjellige materialer: To stål legeringer og et renjern. Pillarer av varierende størrelse, fra diameter 100nm til 2um, er fabrikkert ved bruk av FIB (Focused Ion Beam) i NTNU nanolab, etterfulgt av kompresjonstesting. Hvorvidt størrelsen til pilarene påvirker de mekaniske egenskapene, er gjennomgående undersøkt for alle tre materialene, med spesielt hovedvekt på en-krystall renjern. «Small is stronger» er et velkjent utsagn i micro skala verden, og er diskutert videre her for hvert materiale. F70 er en arktisk multifase ståltype, hvorpå lokale egenskaper i korngrense og matrix er undersøkt. Lokale soner i dette stålet er korngrenser bestående av MA-partikler (Martensitt og rest-Austenitt) og matriksen som består av fraksjoner av bainitt, martensitt, feritt og rest-austenitt. Stålet er varmebehandlet i to sykluser for å simulere ICCGHAZ i sveisesoner, hvorpå avkjølingshastigheten i temperatureintervallet fra T=800 - 500°C er satt til 5 sekund for en prøve, og 10 sekund for en annen prøve. Avkjølingshastigheten avgjører således de bruddmekaniske egenskapene, som er undersøkt ved nanomekanisk kompresjons testing. Pilar størrelsen er 250nm, 450nm og 1um. Resultatet indikerer at 5 sekunds prøven utviser høyere styrke og seighet. Størrelseseffekten er ikke fremtredende før en kritisk pilar diameter på 250nm er nådd. Dette stålet er undersøkt som en del av prosjektet Arctic Materials Group på SINTEF.Et to-fase stål bestående av martensitt korn i en matriks av feritt er undersøkt som en del av EU-prosjektet ved NTNU. To forskjellige prøver er undersøkt, hvorpå forskjellen skyldes legeringsinnhold av 0.05wt% Nb i den ene prøven, og ingenting i den andre. Legeringselementet øker både duktile egenskaper og styrken, på grunn av finfordelte utfellinger av karbider og redusering av kornvekst. Single-slip orienteringen (5 2 11) i feritt fasen er i hovedfokus, men martensitt fasen er også undersøkt. Fra resultatene kan det konkluderes med at innhold av Nb hever styrken og duktiliteten til materialet markant. Pillar diameter testet er 500nm og 1um. Størrelseseffekten kan ikke påvises eller avkreftes, da det ikke er undersøkt nok pillar størrelser til å trekke en absolutt konklusjon. Tre forskjellige orienteringer av 99.998% rent bcc-Jern er undersøkt: Multi-slip orientering (111) og (110), sammen med en single-slip orientering (235). Hovedfokuset ligger i å undersøke størrelseseffekten av en-krystall bcc-Fe, og om effekten av single-slip i forhold til multi-slip systemer påvirker resultatene. Kompresjons testing avslører at det er en fremtredende størrelseseffekt tilstede i alle tre orienteringer. Styrken til (111) orienteringen er høyere jevnt over sammenlignet med de to andre orienteringene, selv om størrelseseffekten er mest fremtredende i (235). Den økte styrken som de minste pillarene utviser, er således ikke påvirket av mengden av tilgjengelige slip-systemer. En beskrivende ligning for størrelses-effekt sensitiviteten er τ = D-n, hvor størrelsen på n indikerer sensitiviteten. For dette renjernet ligger verdien av n i samme området som for fcc metaller, altså en markant størrelseseffekt. Skjønt, er deformasjons mekanismen i fcc og bcc grunnleggende forskjellige. Den observerte styrke økningen, konkluderes å være forårsaket av atermale prosesser, eller ved skru-dislokasjoners grad av mobilitet. Pillar størrelsen varierer fra 100nm, 500nm, 1um og 2um. Det kan derfor konkluderes med at det er en sterk størrelse effekt i bcc-Fe. For å kunne forstå de lokale egenskapene i komplekse mikrostrukturer, er det først og fremst avgjørende å forstå deformasjonsmekanismen i rene en-krystaller. En god teori for plastisk deformasion på sub-mikro nivå er fremdeles ikke fremkommet og validert både eksperimentelt og data simulert. Når dette skjer, kan man være i stand til å forstå effekten av komplekse gitterstrukturer og legeringsinnhold, på nanomekaniske plastiske egenskaper. Med andre ord, man må tilnærme seg problemet fra en bottom-up perspektiv. Koblingen mellom datasimuleringer og eksperimentell testing på sub-mikronivå, må gjøres sterkere. Inntil dags dato, er mye av dette universet fremdeles uutforsket, og kun mindre forstått. Derfor kan du bruke denne oppgaven som ditt springbrett inn i verden av nanoskalerte materialeventyr!
author2 Thaulow, Christian
Akselsen, Odd Magne
Norges teknisk-naturvitenskapelige universitet, Fakultet for ingeniørvitenskap og teknologi, Institutt for produktutvikling og materialer
format Master Thesis
author Haugen, Veronica Gausel
author_facet Haugen, Veronica Gausel
author_sort Haugen, Veronica Gausel
title Nanomekanisk prøving av stål: Er mindre alltid sterkere?
title_short Nanomekanisk prøving av stål: Er mindre alltid sterkere?
title_full Nanomekanisk prøving av stål: Er mindre alltid sterkere?
title_fullStr Nanomekanisk prøving av stål: Er mindre alltid sterkere?
title_full_unstemmed Nanomekanisk prøving av stål: Er mindre alltid sterkere?
title_sort nanomekanisk prøving av stål: er mindre alltid sterkere?
publisher Institutt for produktutvikling og materialer
publishDate 2012
url http://hdl.handle.net/11250/241608
long_lat ENVELOPE(159.267,159.267,58.408,58.408)
ENVELOPE(166.217,166.217,-77.583,-77.583)
ENVELOPE(-178.833,-178.833,65.967,65.967)
geographic Arctic
Korn
Pillar
Rene
geographic_facet Arctic
Korn
Pillar
Rene
genre Arctic
Arktis*
Prøven
genre_facet Arctic
Arktis*
Prøven
op_source 114
op_relation 566070
ntnudaim:7039
http://hdl.handle.net/11250/241608
_version_ 1766350441910632448
spelling ftntnutrondheimi:oai:ntnuopen.ntnu.no:11250/241608 2023-05-15T15:20:13+02:00 Nanomekanisk prøving av stål: Er mindre alltid sterkere? NANOMECHANICAL TESTING OF STEEL: Is smaller always stronger? Haugen, Veronica Gausel Thaulow, Christian Akselsen, Odd Magne Norges teknisk-naturvitenskapelige universitet, Fakultet for ingeniørvitenskap og teknologi, Institutt for produktutvikling og materialer 2012 http://hdl.handle.net/11250/241608 nor nor Institutt for produktutvikling og materialer 566070 ntnudaim:7039 http://hdl.handle.net/11250/241608 114 ntnudaim:7039 MIPROD Produktutvikling og produksjon Produktutvikling og materialer Master thesis 2012 ftntnutrondheimi 2019-09-17T06:48:57Z Gjennom dette arbeidet, er nanomekaniske kompresjonsegenskaper undersøkt for tre forskjellige materialer: To stål legeringer og et renjern. Pillarer av varierende størrelse, fra diameter 100nm til 2um, er fabrikkert ved bruk av FIB (Focused Ion Beam) i NTNU nanolab, etterfulgt av kompresjonstesting. Hvorvidt størrelsen til pilarene påvirker de mekaniske egenskapene, er gjennomgående undersøkt for alle tre materialene, med spesielt hovedvekt på en-krystall renjern. «Small is stronger» er et velkjent utsagn i micro skala verden, og er diskutert videre her for hvert materiale. F70 er en arktisk multifase ståltype, hvorpå lokale egenskaper i korngrense og matrix er undersøkt. Lokale soner i dette stålet er korngrenser bestående av MA-partikler (Martensitt og rest-Austenitt) og matriksen som består av fraksjoner av bainitt, martensitt, feritt og rest-austenitt. Stålet er varmebehandlet i to sykluser for å simulere ICCGHAZ i sveisesoner, hvorpå avkjølingshastigheten i temperatureintervallet fra T=800 - 500°C er satt til 5 sekund for en prøve, og 10 sekund for en annen prøve. Avkjølingshastigheten avgjører således de bruddmekaniske egenskapene, som er undersøkt ved nanomekanisk kompresjons testing. Pilar størrelsen er 250nm, 450nm og 1um. Resultatet indikerer at 5 sekunds prøven utviser høyere styrke og seighet. Størrelseseffekten er ikke fremtredende før en kritisk pilar diameter på 250nm er nådd. Dette stålet er undersøkt som en del av prosjektet Arctic Materials Group på SINTEF.Et to-fase stål bestående av martensitt korn i en matriks av feritt er undersøkt som en del av EU-prosjektet ved NTNU. To forskjellige prøver er undersøkt, hvorpå forskjellen skyldes legeringsinnhold av 0.05wt% Nb i den ene prøven, og ingenting i den andre. Legeringselementet øker både duktile egenskaper og styrken, på grunn av finfordelte utfellinger av karbider og redusering av kornvekst. Single-slip orienteringen (5 2 11) i feritt fasen er i hovedfokus, men martensitt fasen er også undersøkt. Fra resultatene kan det konkluderes med at innhold av Nb hever styrken og duktiliteten til materialet markant. Pillar diameter testet er 500nm og 1um. Størrelseseffekten kan ikke påvises eller avkreftes, da det ikke er undersøkt nok pillar størrelser til å trekke en absolutt konklusjon. Tre forskjellige orienteringer av 99.998% rent bcc-Jern er undersøkt: Multi-slip orientering (111) og (110), sammen med en single-slip orientering (235). Hovedfokuset ligger i å undersøke størrelseseffekten av en-krystall bcc-Fe, og om effekten av single-slip i forhold til multi-slip systemer påvirker resultatene. Kompresjons testing avslører at det er en fremtredende størrelseseffekt tilstede i alle tre orienteringer. Styrken til (111) orienteringen er høyere jevnt over sammenlignet med de to andre orienteringene, selv om størrelseseffekten er mest fremtredende i (235). Den økte styrken som de minste pillarene utviser, er således ikke påvirket av mengden av tilgjengelige slip-systemer. En beskrivende ligning for størrelses-effekt sensitiviteten er τ = D-n, hvor størrelsen på n indikerer sensitiviteten. For dette renjernet ligger verdien av n i samme området som for fcc metaller, altså en markant størrelseseffekt. Skjønt, er deformasjons mekanismen i fcc og bcc grunnleggende forskjellige. Den observerte styrke økningen, konkluderes å være forårsaket av atermale prosesser, eller ved skru-dislokasjoners grad av mobilitet. Pillar størrelsen varierer fra 100nm, 500nm, 1um og 2um. Det kan derfor konkluderes med at det er en sterk størrelse effekt i bcc-Fe. For å kunne forstå de lokale egenskapene i komplekse mikrostrukturer, er det først og fremst avgjørende å forstå deformasjonsmekanismen i rene en-krystaller. En god teori for plastisk deformasion på sub-mikro nivå er fremdeles ikke fremkommet og validert både eksperimentelt og data simulert. Når dette skjer, kan man være i stand til å forstå effekten av komplekse gitterstrukturer og legeringsinnhold, på nanomekaniske plastiske egenskaper. Med andre ord, man må tilnærme seg problemet fra en bottom-up perspektiv. Koblingen mellom datasimuleringer og eksperimentell testing på sub-mikronivå, må gjøres sterkere. Inntil dags dato, er mye av dette universet fremdeles uutforsket, og kun mindre forstått. Derfor kan du bruke denne oppgaven som ditt springbrett inn i verden av nanoskalerte materialeventyr! Master Thesis Arctic Arktis* Prøven NTNU Open Archive (Norwegian University of Science and Technology) Arctic Korn ENVELOPE(159.267,159.267,58.408,58.408) Pillar ENVELOPE(166.217,166.217,-77.583,-77.583) Rene ENVELOPE(-178.833,-178.833,65.967,65.967)