Proteome and Growth Responses of the Key Species Calanus finmarchicus to future Ocean Acidification and Warming

The zooplankton Calanus finmarchicus is a key species in the North Atlantic, by linking the primary production with upper trophic levels and by contributing to vertical export of carbon. Copepod eggs were cultured to a sub-adult stage, under different regimes of temperatures (11 and 14 °C) and pCO2...

Full description

Bibliographic Details
Main Author: Sivertsen, Elisabeth N
Other Authors: Jenssen, Bjørn Munro, Pedersen, Sindre Andre, Devold Kjellsen, Trygve
Format: Master Thesis
Language:English
Published: NTNU 2015
Subjects:
Online Access:http://hdl.handle.net/11250/2351486
id ftntnutrondheimi:oai:ntnuopen.ntnu.no:11250/2351486
record_format openpolar
spelling ftntnutrondheimi:oai:ntnuopen.ntnu.no:11250/2351486 2023-05-15T15:47:58+02:00 Proteome and Growth Responses of the Key Species Calanus finmarchicus to future Ocean Acidification and Warming Sivertsen, Elisabeth N Jenssen, Bjørn Munro Pedersen, Sindre Andre Devold Kjellsen, Trygve 2015 http://hdl.handle.net/11250/2351486 eng eng NTNU ntnudaim:10157 http://hdl.handle.net/11250/2351486 106 Environmental Toxicology and Chemistry Environmental Toxicology Master thesis 2015 ftntnutrondheimi 2019-09-17T06:51:01Z The zooplankton Calanus finmarchicus is a key species in the North Atlantic, by linking the primary production with upper trophic levels and by contributing to vertical export of carbon. Copepod eggs were cultured to a sub-adult stage, under different regimes of temperatures (11 and 14 °C) and pCO2 concentrations (390 and 2080 ppm) in a full factorial design. Morphological characters were measured and the proteome was analyzed using two-dimensional electrophoresis (2-DE) followed by mass spectrometry. To the author s knowledge, this is the first study to use a 2-DE proteomic approach to examine the combined effect of acidification and warming on any marine organism. Somatic growth (body and lipid sac) was reduced in response to warming, but the effects was somewhat ameliorated by acidification in the animals exposed to both stressors. This has not been reported elsewhere, and emphasizes the challenges with predicting the combined effect of acidification and warming. Fourteen proteins were differentially expressed, whereby warming inflicted a more pronounced effect than acidification also on this level. Only a few proteins were affected by acidification alone, and these showed no difference in expression when the copepods were exposed to both stressors. This imply that the acidified effect was ameliorated by warming, which is opposite from what was found for the antagonistic effect observed with the morphological variables. The identified proteins belongs to the cytoskeleton, metabolism or the stress class. The moderate proteome response and the types of proteins affected reflects the changes seen in somatic growth, e.g. an up-regulation of a glycolytic enzyme points to increased metabolism and less energy to store as lipids. Future proteome studies incorporating posttranslational modifications, protein-protein interactions and multiple generations of an organism, may contribute to further knowledge about the mechanisms that are affected by ocean acidification and warming. Master Thesis Calanus finmarchicus North Atlantic Ocean acidification Copepods NTNU Open Archive (Norwegian University of Science and Technology)
institution Open Polar
collection NTNU Open Archive (Norwegian University of Science and Technology)
op_collection_id ftntnutrondheimi
language English
topic Environmental Toxicology and Chemistry
Environmental Toxicology
spellingShingle Environmental Toxicology and Chemistry
Environmental Toxicology
Sivertsen, Elisabeth N
Proteome and Growth Responses of the Key Species Calanus finmarchicus to future Ocean Acidification and Warming
topic_facet Environmental Toxicology and Chemistry
Environmental Toxicology
description The zooplankton Calanus finmarchicus is a key species in the North Atlantic, by linking the primary production with upper trophic levels and by contributing to vertical export of carbon. Copepod eggs were cultured to a sub-adult stage, under different regimes of temperatures (11 and 14 °C) and pCO2 concentrations (390 and 2080 ppm) in a full factorial design. Morphological characters were measured and the proteome was analyzed using two-dimensional electrophoresis (2-DE) followed by mass spectrometry. To the author s knowledge, this is the first study to use a 2-DE proteomic approach to examine the combined effect of acidification and warming on any marine organism. Somatic growth (body and lipid sac) was reduced in response to warming, but the effects was somewhat ameliorated by acidification in the animals exposed to both stressors. This has not been reported elsewhere, and emphasizes the challenges with predicting the combined effect of acidification and warming. Fourteen proteins were differentially expressed, whereby warming inflicted a more pronounced effect than acidification also on this level. Only a few proteins were affected by acidification alone, and these showed no difference in expression when the copepods were exposed to both stressors. This imply that the acidified effect was ameliorated by warming, which is opposite from what was found for the antagonistic effect observed with the morphological variables. The identified proteins belongs to the cytoskeleton, metabolism or the stress class. The moderate proteome response and the types of proteins affected reflects the changes seen in somatic growth, e.g. an up-regulation of a glycolytic enzyme points to increased metabolism and less energy to store as lipids. Future proteome studies incorporating posttranslational modifications, protein-protein interactions and multiple generations of an organism, may contribute to further knowledge about the mechanisms that are affected by ocean acidification and warming.
author2 Jenssen, Bjørn Munro
Pedersen, Sindre Andre
Devold Kjellsen, Trygve
format Master Thesis
author Sivertsen, Elisabeth N
author_facet Sivertsen, Elisabeth N
author_sort Sivertsen, Elisabeth N
title Proteome and Growth Responses of the Key Species Calanus finmarchicus to future Ocean Acidification and Warming
title_short Proteome and Growth Responses of the Key Species Calanus finmarchicus to future Ocean Acidification and Warming
title_full Proteome and Growth Responses of the Key Species Calanus finmarchicus to future Ocean Acidification and Warming
title_fullStr Proteome and Growth Responses of the Key Species Calanus finmarchicus to future Ocean Acidification and Warming
title_full_unstemmed Proteome and Growth Responses of the Key Species Calanus finmarchicus to future Ocean Acidification and Warming
title_sort proteome and growth responses of the key species calanus finmarchicus to future ocean acidification and warming
publisher NTNU
publishDate 2015
url http://hdl.handle.net/11250/2351486
genre Calanus finmarchicus
North Atlantic
Ocean acidification
Copepods
genre_facet Calanus finmarchicus
North Atlantic
Ocean acidification
Copepods
op_source 106
op_relation ntnudaim:10157
http://hdl.handle.net/11250/2351486
_version_ 1766382952587984896