TiO2/SiO2多層奈米薄膜製備及其應用在二氧化碳光還原之研究

碩士 國立清華大學 化學系 GH000943451 摘要 自工業革命以來,人類社會對能量需求大幅提升,工業的發展以及交通的運輸,均產生大量溫室氣體,如二氧化碳以及氮氧化合物等。這些溫室氣體不僅造成了溫室效應,也產生海水酸化問題,嚴重影響地球的生態,因此減少大氣中二氧化碳的含量是一重要的課題。本研究利用二氧化鈦奈米粒子,光催化二氧化碳還原為甲醇,並以層接層 (Layer-by-Layer) 的方式,和二氧化矽在聚酯基材上形成多層複合薄膜,以此薄膜進行光催化反應。研究中以掃描式電子顯微鏡、飛行時間式二次離子質譜儀以及接觸角量測儀,鑑定奈米多層膜的特性,研究結果指出,第一層粒子的吸附能力以及基材表面...

Full description

Bibliographic Details
Main Authors: 李鎮宇, Chen-Yu Lee
Other Authors: 凌永健, Yong-Chien Ling
Language:Chinese
Published: 2007
Subjects:
31
Online Access:http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/32883
id ftnthuniv:oai:nthur.lib.nthu.edu.tw:987654321/32883
record_format openpolar
institution Open Polar
collection National Tsing Hua University Institutional Repository (NTHUR)
op_collection_id ftnthuniv
language Chinese
topic 二氧化碳
光催化還原
層接層奈米多層膜
二氧化鈦
甲醇
Carbon dioxide
Photocatalytic reduction
Layer-by-Layer thin film
Titanium dioxide
Methanol
31
spellingShingle 二氧化碳
光催化還原
層接層奈米多層膜
二氧化鈦
甲醇
Carbon dioxide
Photocatalytic reduction
Layer-by-Layer thin film
Titanium dioxide
Methanol
31
李鎮宇
Chen-Yu Lee
TiO2/SiO2多層奈米薄膜製備及其應用在二氧化碳光還原之研究
topic_facet 二氧化碳
光催化還原
層接層奈米多層膜
二氧化鈦
甲醇
Carbon dioxide
Photocatalytic reduction
Layer-by-Layer thin film
Titanium dioxide
Methanol
31
description 碩士 國立清華大學 化學系 GH000943451 摘要 自工業革命以來,人類社會對能量需求大幅提升,工業的發展以及交通的運輸,均產生大量溫室氣體,如二氧化碳以及氮氧化合物等。這些溫室氣體不僅造成了溫室效應,也產生海水酸化問題,嚴重影響地球的生態,因此減少大氣中二氧化碳的含量是一重要的課題。本研究利用二氧化鈦奈米粒子,光催化二氧化碳還原為甲醇,並以層接層 (Layer-by-Layer) 的方式,和二氧化矽在聚酯基材上形成多層複合薄膜,以此薄膜進行光催化反應。研究中以掃描式電子顯微鏡、飛行時間式二次離子質譜儀以及接觸角量測儀,鑑定奈米多層膜的特性,研究結果指出,第一層粒子的吸附能力以及基材表面的平整度會影響整體密度,且多層膜結構中不同粒子並未獨立分層,而是有部分混雜的情形。此外奈米多層膜的親水性,會隨著鍍膜層數增加而提升,當層數達到六層時,接觸角可降低至僅有5°,表現出超親水的特性。在二氧化碳還原反應中,我們利用自行架設的光反應器暨線上分析系統,分析二氧化碳光還原的產物。實驗結果顯示,當鍍膜層數在八層以下時,鍍膜層數愈多催化效率愈好,得到甲醇的產率愈高,最高可達到9.7 µmol。 Abstract Industrial revolution resulted in increased inputs of green house gases, among which carbon dioxide (CO2) is the major contributor. Excessive emission of CO2 is considered to be the major cause for global warming and ocean acidification. This eventually has made a significant impact on global climate and ecology. Thus, reducing CO2 concentration in the atmosphere will be an important topic. In this study, we use titanium dioxide (TiO2) nanoparticles as catalyst for reducing carbon dioxide to methanol. We prepared TiO2/SiO2 thin film by layer-by-layer technique and characterized by scanning electron microscope, time of flight-secondary ion mass spectrometer and goniometer. Analysis results revealed that adsorption ability of first layer and roughness of substrate surface had an important effect on the film density. Besides, each layer was mixed with TiO2 and SiO2 nanoparticles rather than completely separated. The hydrophilicity was enhanced when increasing the number of layer; the film became superhydrophilic when coating to 6 layers. In CO2 photoreduction experiment, we used a lab-built photoreactor combined with analytical system to analyze the product of CO2 reduction. The results indicated that the photocatalytic efficiency increased with the number of layer and the yield of methanol reached maximum, 6.5 ?mol, when the layer number was 8.
author2 凌永健
Yong-Chien Ling
author 李鎮宇
Chen-Yu Lee
author_facet 李鎮宇
Chen-Yu Lee
author_sort 李鎮宇
title TiO2/SiO2多層奈米薄膜製備及其應用在二氧化碳光還原之研究
title_short TiO2/SiO2多層奈米薄膜製備及其應用在二氧化碳光還原之研究
title_full TiO2/SiO2多層奈米薄膜製備及其應用在二氧化碳光還原之研究
title_fullStr TiO2/SiO2多層奈米薄膜製備及其應用在二氧化碳光還原之研究
title_full_unstemmed TiO2/SiO2多層奈米薄膜製備及其應用在二氧化碳光還原之研究
title_sort tio2/sio2多層奈米薄膜製備及其應用在二氧化碳光還原之研究
publishDate 2007
url http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/32883
genre Ocean acidification
genre_facet Ocean acidification
op_relation 1. Yang, C.; Ma, Z.; Zhao, N.; Wei, W.; Hu, T.; Sun, Y., Catalysis Today 2006, 115, 222-227. 2. Wang, X. T.; Zhong, S. H.; Xiao, X. F., Journal of Molecular Catalysis A-Chemical 2005, 229, 87-93. 3. Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, A., Physical Chemistry Chemical Physics 2000, 2, 5302-5307. 4. Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S., Physical Chemistry Chemical Physics 2000, 2, 2635-2639. 5. Ku, Y.; Lee, W. H.; Wang, W. Y., Journal of Molecular Catalysis A-Chemical 2004, 212, 191-196. 6. Dey, G. R.; Belapurkar, A. D.; Kishore, K., Journal of Photochemistry and Photobiology A-Chemistry 2004, 163, 503-508. 7. Tseng, I. H.; Wu, J. C. S.; Chou, H. Y., Journal of Catalysis 2004, 221, 432-440. 8. Tseng, I. H.; Wu, J. C. S., Catalysis Today 2004, 97, 113-119. 9. 林宏明, 國立台灣大學碩士論文 2004, 13. 10. Yoneyama, H., Catalysis Today 1997, 39, 169-175. 11. Tian, Y.; Tatsuma, T., Journal of the American Chemical Society 2005, 127, 7632-7637. 12. Yu, Y.; Yu, J. C.; Yu, J. G.; Kwok, Y. C.; Che, Y. K.; Zhao, J. C.; Ding, L.; Ge, W. K.; Wong, P. K., Applied Catalysis A-General 2005, 289, 186-196. 13. Pathak, P.; Meziani, M. J.; Castillo, L.; Sun, Y. P., Green Chemistry 2005, 7, 667-670. 14. Kaneco, S.; Shimizu, Y.; Ohta, K.; Mizuno, T., Journal of Photochemistry and Photobiology A-Chemistry 1998, 115, 223-226. 15. Sasirekha, N.; Basha, S. J. S.; Shanthi, K., Applied Catalysis B-Environmental 2006, 62, 169-180. 16. Kakumoto, T., Energy Conversion and Management 1995, 36, 661-664. 17. Slamet; Nasution, H. W.; Purnama, E.; Kosela, S.; Gunlazuardi, J., Catalysis Communications 2005, 6, 313-319. 18. Bando, K. K.; Sayama, K.; Kusama, H.; Okabe, K.; Arakawa, H., Applied Catalysis A-General 1997, 165, 391-409. 19. Inoue, H.; Matsuyama, T.; Liu, B. J.; Sakata, T.; Mori, H.; Yoneyama, H., Chemistry Letters 1994, 653-656. 20. Hwang, J. S.; Chang, J. S.; Park, S. E.; Ikeue, K.; Anpo, M., Topics in Catalysis 2005, 35, 311-319. 21. Guan, G. Q.; Kida, T.; Yoshida, A., Applied Catalysis B-Environmental 2003, 41, 387-396. 22. Kohno, Y.; Hayashi, H.; Takenaka, S.; Tanaka, T.; Funabiki, T.; Yoshida, S., Journal of Photochemistry and Photobiology A-Chemistry 1999, 126, 117-123. 23. Yoshida, A.; Kohno, Y., Catalysis Surveys from Japan 2000, 4, 107-114. 24. Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S., Chemical Communications 1997, 841-842. 25. Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, A., Chemistry Letters 1997, 993-994. 26. Liu, J. Y.; Shi, J. L.; He, D. H.; Zhang, Q. J.; Wu, X. H.; Liang, Y.; Zhu, Q. M., Applied Catalysis A-General 2001, 218, 113-119. 27. Wu, H.; Huang, S.; Jiang, Z., Catalysis Today 2004, 98, 545-552. 28. 陳陵援, 科學發展 2006, 400, 56-61. 29. Shang, J.; Li, W.; Zhu, Y. F., Journal of Molecular Catalysis A-Chemical 2003, 202, 187-195. 30. Ma, C. M.; Ku, Y., Reaction Kinetics and Catalysis Letters 2006, 89, 293-301. 31. Pathak, P.; Meziani, M. J.; Li, Y.; Cureton, L. T.; Sun, Y. P., Chemical Communications 2004, 1234-1235. 32. Yamashita, H.; Shiga, A.; Kawasaki, S.; Ichihashi, Y.; Ehara, S.; Anpo, M., Energy Conversion and Management 1995, 36, 617-620. 33. Haarstrick, A.; Kut, O. M.; Heinzle, E., Environmental Science & Technology 1996, 30, 817-824. 34. Wu, J. C. S.; Lin, H. M.; Lai, C. L., Applied Catalysis A-General 2005, 296, 194-200. 35. Habibi, M. H.; Vosooghian, H., Journal of Photochemistry and Photobiology A-Chemistry 2005, 174, 45-52. 36. Wu, N. M.; Chen, W. C., Environmental Modeling & Assessment 2006, 11, 381-386. 37. Ching, W. H.; Leung, M.; Leung, D. Y. C., Solar Energy 2004, 77, 129-135. 38. Yahaya, A. H.; Gondal, M. A.; Hameed, A., Chemical Physics Letters 2004, 400, 206-212. 39. Mizuno, M.; Adachi, K.; Ohta, K.; Saji, A., Journal of Photochemistry and Photobiology A-Chemistry 1996, 98, 87-90. 40. Kohno, Y.; Ishikawa, H.; Tanaka, T.; Funabiki, T.; Yoshida, S., Physical Chemistry Chemical Physics 2001, 3, 1108-1113. 41. Ren, M. M.; Ravikrishna, R.; Valsaraj, K. T., Environmental Science & Technology 2006, 40, 7029-7033. 42. Chang, C. P.; Chen, J. N.; Lu, M. C.; Yang, H. Y., Chemosphere 2005, 58, 1071-1078. 43. http://www.ksvinc.com/LB.htm. 44. http://www.inapg.inra.fr/ens_rech/siab/asteq/elba/images/y-depo3.jpg. 45. Iler, R. K., Journal of Colloid Interface Science 1966, 21, 569-594. 46. Decher, G., Science 1997, 277, 1232-1237. 47. Kovtyukhova, N.; Ollivier, P. J.; Chizhik, S.; Dubravin, A.; Buzaneva, E.; Gorchinskiy, A.; Marchenko, A.; Smirnova, N., Thin Solid Films 1999, 337, 166-170. 48. Lee, D.; Rubner, M. F.; Cohen, R. E., Nano Letters 2006, 6, 2305-2312. 49. Lvov, Y.; Ariga, K.; Onda, M.; Ichinose, I.; Kunitake, T., Langmuir 1997, 13, 6195-6203. 50. Sennerfors, T.; Bogdanovic, G.; Tiberg, F., Langmuir 2002, 18, 6410-6415. 51. He, J. A.; Mosurkal, R.; Samuelson, L. A.; Li, L.; Kumar, J., Langmuir 2003, 19, 2169-2174. 52. Wu, A.; Yoo, D.; Lee, J. K.; Rubner, M. F., Journal of the American Chemical Society 1999, 121, 4883-4891. 53. Ho, P. K. H.; Kim, J. S.; Burroughes, J. H.; Becker, H.; Li, S. F. Y.; Brown, T. M.; Cacialli, F.; Friend, R. H., Nature 2000, 404, 481-484. 54. Cebeci, F. C.; Wu, Z. Z.; Zhai, L.; Cohen, R. E.; Rubner, M. F., Langmuir 2006, 22, 2856-2862. 55. Laugel, N.; Hemmerle, J.; Porcel, C.; Voegel, J. C.; Schaaf, P.; Ball, V., Langmuir 2007, 23, 3706-3711. 56. http://www.funsci.com/fun3_en/exper2/exper2_10.gif. 57. Martines, E.; Seunarine, K.; Morgan, H.; Gadegaard, N.; Wilkinson, C. D. W.; Riehle, M. O., Nano Letters 2005, 5, 2097-2103. 58. Wenzel, R. N., Industry and Energy Chemistry 1936, 988-994. 59. Zhang, X. T.; Jin, M.; Liu, Z. Y.; Nishimoto, S.; Saito, H.; Murakami, T.; Fujishima, A., Langmuir 2006, 22, 9477-9479. 60. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Nature 1997, 388, 431-432. 61. Sun, T. L.; Wang, G. J.; Feng, L.; Liu, B. Q.; Ma, Y. M.; Jiang, L.; Zhu, D. B., Angewandte Chemie-International Edition 2004, 43, 357-360. 62. Yu, X.; Wang, Z. Q.; Jiang, Y. G.; Shi, F.; Zhang, X., Advanced Materials 2005, 17, 1289-1293. 63. Yu, X.; Wang, Z. Q.; Jiang, Y. G.; Zhang, X., Langmuir 2006, 22, 4483-4486. 64. Gan, W. Y.; Lam, S. W.; Chiang, K.; Amal, R.; Zhao, H. J.; Brungs, M. P., Journal of Materials Chemistry 2007, 17, 952-954. 65. Http://wiki.truevision3d.com/tv3d/light_attenuation. 66. http://www.theses.ulaval.ca/2004/21789/21789005.png. 67. http://www.brewerscience.com/uploads/pics/spinner.gif. 68. http://www.solgel.com/articles/Nov00/Image247.gif. 69. http://www.nbtc.cornell.edu/facilities/downloads/Zetasizer%20chapter%2016.pdf. 70. 黃見富, 國立清華大學博士論文 1995. 71. http://www.ifw-dresden.de/institutes/ikm/organisation/dep-31/methods/secondary-ion-mass-; spectrometry-sims. 72. http://www.ceegs.ohio-state.edu/~lweavers/images/cavitationbubble.gif. 73. Ghule, K.; Ghule, A. V.; Chen, B. J.; Ling, Y. C., Green Chemistry 2006, 8, 1034-1041. 74. Zhou, Z. G.; Li, F. Y.; Song, Q. L.; Yi, T.; Hou, X. Y.; Huang, C. H., Chemistry Letters 2005, 34, 1298-1299. 75. Ren, D. S.; Cui, X. L.; Shen, J.; Zhang, Q.; Yang, X. L.; Zhang, Z. J., Journal of Sol-Gel Science and Technology 2004, 29, 131-136. 76. Shi, D.; Feng, Y.; Zhong, S. H., Catalysis Today 2004, 98, 505-509. 77. Ikeue, K.; Nozaki, S.; Ogawa, M.; Anpo, M., Catalysis Letters 2002, 80, 111-114. 78. Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T., Catalysis Today 1998, 44, 327-332.
_version_ 1766159646449467392
spelling ftnthuniv:oai:nthur.lib.nthu.edu.tw:987654321/32883 2023-05-15T17:52:15+02:00 TiO2/SiO2多層奈米薄膜製備及其應用在二氧化碳光還原之研究 Preparation of TiO2/SiO2 LbL Thin Film and it's Applications in Photoreduction of Carbon Dioxide 李鎮宇 Chen-Yu Lee 凌永健 Yong-Chien Ling 2007 155 bytes text/html http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/32883 zh_TW chi 1. Yang, C.; Ma, Z.; Zhao, N.; Wei, W.; Hu, T.; Sun, Y., Catalysis Today 2006, 115, 222-227. 2. Wang, X. T.; Zhong, S. H.; Xiao, X. F., Journal of Molecular Catalysis A-Chemical 2005, 229, 87-93. 3. Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, A., Physical Chemistry Chemical Physics 2000, 2, 5302-5307. 4. Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S., Physical Chemistry Chemical Physics 2000, 2, 2635-2639. 5. Ku, Y.; Lee, W. H.; Wang, W. Y., Journal of Molecular Catalysis A-Chemical 2004, 212, 191-196. 6. Dey, G. R.; Belapurkar, A. D.; Kishore, K., Journal of Photochemistry and Photobiology A-Chemistry 2004, 163, 503-508. 7. Tseng, I. H.; Wu, J. C. S.; Chou, H. Y., Journal of Catalysis 2004, 221, 432-440. 8. Tseng, I. H.; Wu, J. C. S., Catalysis Today 2004, 97, 113-119. 9. 林宏明, 國立台灣大學碩士論文 2004, 13. 10. Yoneyama, H., Catalysis Today 1997, 39, 169-175. 11. Tian, Y.; Tatsuma, T., Journal of the American Chemical Society 2005, 127, 7632-7637. 12. Yu, Y.; Yu, J. C.; Yu, J. G.; Kwok, Y. C.; Che, Y. K.; Zhao, J. C.; Ding, L.; Ge, W. K.; Wong, P. K., Applied Catalysis A-General 2005, 289, 186-196. 13. Pathak, P.; Meziani, M. J.; Castillo, L.; Sun, Y. P., Green Chemistry 2005, 7, 667-670. 14. Kaneco, S.; Shimizu, Y.; Ohta, K.; Mizuno, T., Journal of Photochemistry and Photobiology A-Chemistry 1998, 115, 223-226. 15. Sasirekha, N.; Basha, S. J. S.; Shanthi, K., Applied Catalysis B-Environmental 2006, 62, 169-180. 16. Kakumoto, T., Energy Conversion and Management 1995, 36, 661-664. 17. Slamet; Nasution, H. W.; Purnama, E.; Kosela, S.; Gunlazuardi, J., Catalysis Communications 2005, 6, 313-319. 18. Bando, K. K.; Sayama, K.; Kusama, H.; Okabe, K.; Arakawa, H., Applied Catalysis A-General 1997, 165, 391-409. 19. Inoue, H.; Matsuyama, T.; Liu, B. J.; Sakata, T.; Mori, H.; Yoneyama, H., Chemistry Letters 1994, 653-656. 20. Hwang, J. S.; Chang, J. S.; Park, S. E.; Ikeue, K.; Anpo, M., Topics in Catalysis 2005, 35, 311-319. 21. Guan, G. Q.; Kida, T.; Yoshida, A., Applied Catalysis B-Environmental 2003, 41, 387-396. 22. Kohno, Y.; Hayashi, H.; Takenaka, S.; Tanaka, T.; Funabiki, T.; Yoshida, S., Journal of Photochemistry and Photobiology A-Chemistry 1999, 126, 117-123. 23. Yoshida, A.; Kohno, Y., Catalysis Surveys from Japan 2000, 4, 107-114. 24. Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S., Chemical Communications 1997, 841-842. 25. Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, A., Chemistry Letters 1997, 993-994. 26. Liu, J. Y.; Shi, J. L.; He, D. H.; Zhang, Q. J.; Wu, X. H.; Liang, Y.; Zhu, Q. M., Applied Catalysis A-General 2001, 218, 113-119. 27. Wu, H.; Huang, S.; Jiang, Z., Catalysis Today 2004, 98, 545-552. 28. 陳陵援, 科學發展 2006, 400, 56-61. 29. Shang, J.; Li, W.; Zhu, Y. F., Journal of Molecular Catalysis A-Chemical 2003, 202, 187-195. 30. Ma, C. M.; Ku, Y., Reaction Kinetics and Catalysis Letters 2006, 89, 293-301. 31. Pathak, P.; Meziani, M. J.; Li, Y.; Cureton, L. T.; Sun, Y. P., Chemical Communications 2004, 1234-1235. 32. Yamashita, H.; Shiga, A.; Kawasaki, S.; Ichihashi, Y.; Ehara, S.; Anpo, M., Energy Conversion and Management 1995, 36, 617-620. 33. Haarstrick, A.; Kut, O. M.; Heinzle, E., Environmental Science & Technology 1996, 30, 817-824. 34. Wu, J. C. S.; Lin, H. M.; Lai, C. L., Applied Catalysis A-General 2005, 296, 194-200. 35. Habibi, M. H.; Vosooghian, H., Journal of Photochemistry and Photobiology A-Chemistry 2005, 174, 45-52. 36. Wu, N. M.; Chen, W. C., Environmental Modeling & Assessment 2006, 11, 381-386. 37. Ching, W. H.; Leung, M.; Leung, D. Y. C., Solar Energy 2004, 77, 129-135. 38. Yahaya, A. H.; Gondal, M. A.; Hameed, A., Chemical Physics Letters 2004, 400, 206-212. 39. Mizuno, M.; Adachi, K.; Ohta, K.; Saji, A., Journal of Photochemistry and Photobiology A-Chemistry 1996, 98, 87-90. 40. Kohno, Y.; Ishikawa, H.; Tanaka, T.; Funabiki, T.; Yoshida, S., Physical Chemistry Chemical Physics 2001, 3, 1108-1113. 41. Ren, M. M.; Ravikrishna, R.; Valsaraj, K. T., Environmental Science & Technology 2006, 40, 7029-7033. 42. Chang, C. P.; Chen, J. N.; Lu, M. C.; Yang, H. Y., Chemosphere 2005, 58, 1071-1078. 43. http://www.ksvinc.com/LB.htm. 44. http://www.inapg.inra.fr/ens_rech/siab/asteq/elba/images/y-depo3.jpg. 45. Iler, R. K., Journal of Colloid Interface Science 1966, 21, 569-594. 46. Decher, G., Science 1997, 277, 1232-1237. 47. Kovtyukhova, N.; Ollivier, P. J.; Chizhik, S.; Dubravin, A.; Buzaneva, E.; Gorchinskiy, A.; Marchenko, A.; Smirnova, N., Thin Solid Films 1999, 337, 166-170. 48. Lee, D.; Rubner, M. F.; Cohen, R. E., Nano Letters 2006, 6, 2305-2312. 49. Lvov, Y.; Ariga, K.; Onda, M.; Ichinose, I.; Kunitake, T., Langmuir 1997, 13, 6195-6203. 50. Sennerfors, T.; Bogdanovic, G.; Tiberg, F., Langmuir 2002, 18, 6410-6415. 51. He, J. A.; Mosurkal, R.; Samuelson, L. A.; Li, L.; Kumar, J., Langmuir 2003, 19, 2169-2174. 52. Wu, A.; Yoo, D.; Lee, J. K.; Rubner, M. F., Journal of the American Chemical Society 1999, 121, 4883-4891. 53. Ho, P. K. H.; Kim, J. S.; Burroughes, J. H.; Becker, H.; Li, S. F. Y.; Brown, T. M.; Cacialli, F.; Friend, R. H., Nature 2000, 404, 481-484. 54. Cebeci, F. C.; Wu, Z. Z.; Zhai, L.; Cohen, R. E.; Rubner, M. F., Langmuir 2006, 22, 2856-2862. 55. Laugel, N.; Hemmerle, J.; Porcel, C.; Voegel, J. C.; Schaaf, P.; Ball, V., Langmuir 2007, 23, 3706-3711. 56. http://www.funsci.com/fun3_en/exper2/exper2_10.gif. 57. Martines, E.; Seunarine, K.; Morgan, H.; Gadegaard, N.; Wilkinson, C. D. W.; Riehle, M. O., Nano Letters 2005, 5, 2097-2103. 58. Wenzel, R. N., Industry and Energy Chemistry 1936, 988-994. 59. Zhang, X. T.; Jin, M.; Liu, Z. Y.; Nishimoto, S.; Saito, H.; Murakami, T.; Fujishima, A., Langmuir 2006, 22, 9477-9479. 60. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Nature 1997, 388, 431-432. 61. Sun, T. L.; Wang, G. J.; Feng, L.; Liu, B. Q.; Ma, Y. M.; Jiang, L.; Zhu, D. B., Angewandte Chemie-International Edition 2004, 43, 357-360. 62. Yu, X.; Wang, Z. Q.; Jiang, Y. G.; Shi, F.; Zhang, X., Advanced Materials 2005, 17, 1289-1293. 63. Yu, X.; Wang, Z. Q.; Jiang, Y. G.; Zhang, X., Langmuir 2006, 22, 4483-4486. 64. Gan, W. Y.; Lam, S. W.; Chiang, K.; Amal, R.; Zhao, H. J.; Brungs, M. P., Journal of Materials Chemistry 2007, 17, 952-954. 65. Http://wiki.truevision3d.com/tv3d/light_attenuation. 66. http://www.theses.ulaval.ca/2004/21789/21789005.png. 67. http://www.brewerscience.com/uploads/pics/spinner.gif. 68. http://www.solgel.com/articles/Nov00/Image247.gif. 69. http://www.nbtc.cornell.edu/facilities/downloads/Zetasizer%20chapter%2016.pdf. 70. 黃見富, 國立清華大學博士論文 1995. 71. http://www.ifw-dresden.de/institutes/ikm/organisation/dep-31/methods/secondary-ion-mass-; spectrometry-sims. 72. http://www.ceegs.ohio-state.edu/~lweavers/images/cavitationbubble.gif. 73. Ghule, K.; Ghule, A. V.; Chen, B. J.; Ling, Y. C., Green Chemistry 2006, 8, 1034-1041. 74. Zhou, Z. G.; Li, F. Y.; Song, Q. L.; Yi, T.; Hou, X. Y.; Huang, C. H., Chemistry Letters 2005, 34, 1298-1299. 75. Ren, D. S.; Cui, X. L.; Shen, J.; Zhang, Q.; Yang, X. L.; Zhang, Z. J., Journal of Sol-Gel Science and Technology 2004, 29, 131-136. 76. Shi, D.; Feng, Y.; Zhong, S. H., Catalysis Today 2004, 98, 505-509. 77. Ikeue, K.; Nozaki, S.; Ogawa, M.; Anpo, M., Catalysis Letters 2002, 80, 111-114. 78. Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T., Catalysis Today 1998, 44, 327-332. 二氧化碳 光催化還原 層接層奈米多層膜 二氧化鈦 甲醇 Carbon dioxide Photocatalytic reduction Layer-by-Layer thin film Titanium dioxide Methanol 31 2007 ftnthuniv 2014-12-17T20:11:31Z 碩士 國立清華大學 化學系 GH000943451 摘要 自工業革命以來,人類社會對能量需求大幅提升,工業的發展以及交通的運輸,均產生大量溫室氣體,如二氧化碳以及氮氧化合物等。這些溫室氣體不僅造成了溫室效應,也產生海水酸化問題,嚴重影響地球的生態,因此減少大氣中二氧化碳的含量是一重要的課題。本研究利用二氧化鈦奈米粒子,光催化二氧化碳還原為甲醇,並以層接層 (Layer-by-Layer) 的方式,和二氧化矽在聚酯基材上形成多層複合薄膜,以此薄膜進行光催化反應。研究中以掃描式電子顯微鏡、飛行時間式二次離子質譜儀以及接觸角量測儀,鑑定奈米多層膜的特性,研究結果指出,第一層粒子的吸附能力以及基材表面的平整度會影響整體密度,且多層膜結構中不同粒子並未獨立分層,而是有部分混雜的情形。此外奈米多層膜的親水性,會隨著鍍膜層數增加而提升,當層數達到六層時,接觸角可降低至僅有5°,表現出超親水的特性。在二氧化碳還原反應中,我們利用自行架設的光反應器暨線上分析系統,分析二氧化碳光還原的產物。實驗結果顯示,當鍍膜層數在八層以下時,鍍膜層數愈多催化效率愈好,得到甲醇的產率愈高,最高可達到9.7 µmol。 Abstract Industrial revolution resulted in increased inputs of green house gases, among which carbon dioxide (CO2) is the major contributor. Excessive emission of CO2 is considered to be the major cause for global warming and ocean acidification. This eventually has made a significant impact on global climate and ecology. Thus, reducing CO2 concentration in the atmosphere will be an important topic. In this study, we use titanium dioxide (TiO2) nanoparticles as catalyst for reducing carbon dioxide to methanol. We prepared TiO2/SiO2 thin film by layer-by-layer technique and characterized by scanning electron microscope, time of flight-secondary ion mass spectrometer and goniometer. Analysis results revealed that adsorption ability of first layer and roughness of substrate surface had an important effect on the film density. Besides, each layer was mixed with TiO2 and SiO2 nanoparticles rather than completely separated. The hydrophilicity was enhanced when increasing the number of layer; the film became superhydrophilic when coating to 6 layers. In CO2 photoreduction experiment, we used a lab-built photoreactor combined with analytical system to analyze the product of CO2 reduction. The results indicated that the photocatalytic efficiency increased with the number of layer and the yield of methanol reached maximum, 6.5 ?mol, when the layer number was 8. Other/Unknown Material Ocean acidification National Tsing Hua University Institutional Repository (NTHUR)