以全細胞糖化與脂肪脢酯化系統生產麴酸及L-維他命C衍生物之研究
博士 國立清華大學 化學工程學系 GH000917611 本研究目的為運用酵素法合成麴酸與L-維他命C衍生物,改善其對光與熱的高度敏感性與減低對皮膚具刺激性的傷害,研究策略為利用脂解酵素酯化與全細胞糖化,來降低對皮膚的刺激傷害,以及增加衍生物對水溶性與酯溶性的溶解度、穩定度、產業應用性。 L-維他命C棕櫚酯生成條件:固定化酵素Candida antartica Lipase B (Novozym 435)為催化劑,L-維他命C與Palmitic acid反應基質比為1:4,50℃下以10 mL丙酮反應24小時,轉化率為47.6 %,若添加3g/L的分子篩,其轉化率可提高到61.3 %。Novo...
Main Authors: | , |
---|---|
Other Authors: | , , , |
Language: | Chinese |
Published: |
2007
|
Subjects: | |
Online Access: | http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/30703 |
id |
ftnthuniv:oai:nthur.lib.nthu.edu.tw:987654321/30703 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
National Tsing Hua University Institutional Repository (NTHUR) |
op_collection_id |
ftnthuniv |
language |
Chinese |
topic |
全細胞 酯化酵素 麴酸 維他命C 24 |
spellingShingle |
全細胞 酯化酵素 麴酸 維他命C 24 謝欣如 Hsin-Ju Hsieh 以全細胞糖化與脂肪脢酯化系統生產麴酸及L-維他命C衍生物之研究 |
topic_facet |
全細胞 酯化酵素 麴酸 維他命C 24 |
description |
博士 國立清華大學 化學工程學系 GH000917611 本研究目的為運用酵素法合成麴酸與L-維他命C衍生物,改善其對光與熱的高度敏感性與減低對皮膚具刺激性的傷害,研究策略為利用脂解酵素酯化與全細胞糖化,來降低對皮膚的刺激傷害,以及增加衍生物對水溶性與酯溶性的溶解度、穩定度、產業應用性。 L-維他命C棕櫚酯生成條件:固定化酵素Candida antartica Lipase B (Novozym 435)為催化劑,L-維他命C與Palmitic acid反應基質比為1:4,50℃下以10 mL丙酮反應24小時,轉化率為47.6 %,若添加3g/L的分子篩,其轉化率可提高到61.3 %。Novozym 435重複使用10次來生產L-維他命C棕櫚酯的平均轉化率為44.5 %,分離純化平均純度為99.8 %,平均回收率為89.1 %。固定化脂解酵素大幅提昇懸浮態酵素的酯化活性,L-維他命C棕櫚酯轉化率為46 %。利用正己烷與低溫溶解度降低而析出L-維他命C棕櫚酯,其純化後純度為83 %,回收率為76 %。 L-維他命C糖苷生成條件:Aspergillus niger較佳的反應條件為1:9反應基質比,固定化細胞顆粒濃度4g/6 mL,0.02 M pH 5.5 Sodium acetate buffer,30℃下反應12小時,流速為12 ml/min,利用4 %褐藻膠固定化7g/L細胞為反應催化劑,固定化細胞顆粒重複使用13 次,其平均轉化率為72 %。α-Amylase、α-glucosidase、Glucoamylase及Glucosyltransferase在Pellet與Broth中根據培養天數來探討其酵素水解p-NGP之活性,Glucoamylase、α-glucosidase及Glucosyltransferase在Pellet與Broth中水解p-NGP之活性較α-Amylase顯著。Broth中的水解活性,隨著胞外酵素培養天數的增加而增加,Pellet中的水解活性,隨著胞外酵素培養天數的增加而減少。Aspergillus niger全細胞胞內與胞外糖化酵素之探討數據分析顯示,在Culture supernatant中,alpha-glucosidase在維他命C糖化反應中扮演最重要角色;在Pellet中,glucoamylase在維他命C糖化反應中是最主要的角色。分離純化L-維他命C醣苷,選用Amberlite? CG-400 anion exchange填充管柱,利用0.2 M NaCl溶液來脫附L-維他命C糖苷,合併使用Bio-Gel-P2填充管柱中,以二次水沖提出L-維他命C糖苷,其純度約為85 %,回收率約為75 %。 麴酸糖苷生成之條件:突變株Xanthomonas campestris以麥芽糖為碳源及NH4Cl為氮源,基質比1/8於0.01M HEPES緩衝液中,30℃反應28小時,轉化率82%。利用Sepharose G10管柱與活性碳管柱,以10%及70%酒精沖提出麴酸糖苷,純度為76%,回收率為71%。 黑色素細胞/纖維母細胞/角質細胞較佳的GAGs添加量分別為CS 0.8 mg/ml,DS 1.6 mg/ml,HA 0.1 mg/ml。Tyrosinase、tyrosinase-related protein 1、tyrosinase-related protein 2等基因中,添加2 mM Ascorbyl Glucoside的基因強度中,顯示Ascorbyl Glucoside對黑素色具有抑制的能力,而且tyr-1基因強度≧tyr-2基因強度,推測黑色素生成路徑是生成Eumelanin而不是Pheomelanin。Keratin 6、keratin 16、keratin 17等基因中,添加2 mM Ascorbyl Glucoside的基因強度中,顯示Ascorbyl Glucoside對角質素生成具有正向的影響效應。Procollagen基因中,添加2 mM Ascorbyl Glucoside的基因強度中,顯示Ascorbyl Glucoside對collageng生成具有正向的影響效應。 西方點墨法的實驗分析數據顯示在8mM的ascorbyl glucoside添加下,黑色素細胞/纖維母細胞/角質細胞在3D-scaffold內可生成較多的Collagen I。 3D-scaffold中,對照組中黑色素細胞/纖維母細胞/角質細胞生成的Collagen I隨著培養時間增加而增加。細胞染色角質素,由於角質素抗體無高度特異性,以致無法清楚分辨出纖維母細胞及角質細胞。 H&E細胞section染色圖顯示有投藥Ascorbyl glucoside的培養狀況下,細胞數生長的情況比不投藥Ascorbyl glucoside的好。 Alcian Blue細胞section染色顯示有投藥Ascorbyl glucoside的培養狀況下,新生細胞數的情況比不投藥Ascorbyl glucoside的好。 纖維母細胞投藥2mM培養,movie附加檔說明細胞遷移比未投藥的細胞遷移速度要快。說明ascorbyl glucoside有促進細胞遷移的效應,並且投藥的纖維母細胞定向性也大於未投藥的纖維母細胞,說明ascorbyl glucoside有促進細胞做直線遷移的效應。 |
author2 |
吳文騰 朱一民 Wen-Teng Wu I-Ming Chu |
author |
謝欣如 Hsin-Ju Hsieh |
author_facet |
謝欣如 Hsin-Ju Hsieh |
author_sort |
謝欣如 |
title |
以全細胞糖化與脂肪脢酯化系統生產麴酸及L-維他命C衍生物之研究 |
title_short |
以全細胞糖化與脂肪脢酯化系統生產麴酸及L-維他命C衍生物之研究 |
title_full |
以全細胞糖化與脂肪脢酯化系統生產麴酸及L-維他命C衍生物之研究 |
title_fullStr |
以全細胞糖化與脂肪脢酯化系統生產麴酸及L-維他命C衍生物之研究 |
title_full_unstemmed |
以全細胞糖化與脂肪脢酯化系統生產麴酸及L-維他命C衍生物之研究 |
title_sort |
以全細胞糖化與脂肪脢酯化系統生產麴酸及l-維他命c衍生物之研究 |
publishDate |
2007 |
url |
http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/30703 |
genre |
antartic* |
genre_facet |
antartic* |
op_relation |
參考文獻 Arrigoni O., and Tullio M. C. D., Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta.2002, 1569:1-9. Bae H. K., Lee S. B., and Park C. S., Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability. Journal of Agricultural and Food Chemistry.2002, 50: 3309-3316. Chen C. S., Liu K. J., Lou1 Y. H., and Shieh C. J., Optimisation of kojic acid monolaurate synthesis with lipase PS from Pseudomonas cepacia. Journal of the Science of Food and Agriculture.2002, 82:601-605. Chen H. Y., and Yen G. C., Free Radicals, Antioxidant Defenses and Human Health. Nutrition Sciences Journal.1998, 23.(1):105-121. Duval C., Keratinocytes control the Pheo/Eumelanin ratio in cultured normal human melanocytes. Pigment of Cell Research. 2002, 15: 440-446. Curto E. V., Kwong C., and Hermersdörfer H., Inhibitors of mannalian melanocyte tyrosinase: In vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochemical Pharmacology.1999, 57: 663-672. Grüning B., and Hills G., Enzymatic preparation of regioselectivity fatty acid esters of ascorbic acid. United States Patent. 6,150,543.2000. Hassan M. A., Ismail F., Yamamoto S., Yamada H. and Nakanishi K., Enzymatic synthesis of Galactosylkojic acid with immobilized β-galactosidase from Bacillus circulans. Bioscience, Biotechnology, and Biochemistry.1995,59 (3):543-545. Hedley S. J., Fibroblasts play a regulatory role in the control of pigmentation in reconstructed human skin from types I and II. Pigment of Cell Research. 2002, 15:49-56. Hirobe T., Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment of Cell research.2004, 18:2-12 Huang S. C., Lin C. C., and Huang M. C., Simultaneous determination of magnesium ascorbyl phosphate, ascorbyl glucoside, kojic acid, arbutin and hydroquinone in skin whitening cosmetics by HPLC. Journal of Food and Drug Analysis.2004, 12: 13-18. Kamiya N., Murakami E., Goto M., and Nakashio F., Effect of using a co-solvent in the preparation of surfactant-coated lipases on catalytic activity in organic media. Journal of Fermentation and Bioengineering.1996, 82(1):37-41. Kim H., Choi J., Cho J. K., Kim S. Y., and Lee Y. S., Solid-phase synthesis of kojic acid-tripeptides and their tyrosinase inhibitory activity, storage stability and toxicity. Bioorganic & Medicinal Chemistry Letters.2004, 14:2843-2846. Kimura Y., Kanatani H., Shima M., Adachi S., and Matsuno R., Anti-oxidant activity of acyl ascorbates in intestinal epithelial cells. Biotechnology Letters.2003, 25:1723-1727. Kitao S., and Sekine H., Syntheses of two kojic acid glucosides with sucrose phosphorylase from Leuconostoc mesenteroides. Bioscience, Biotechnology, and Biochemistry.1994, 58: 419-420. Kobayashi T., Adachi S., Nakanishi K., and Matsuno R., Semi-continuous production of lauroyl kojic acid through lipase-catalyzed condensation in acetonitrile. Biochemical Engineering Journal.2001, 9:85-89. Kobayashi Y., Kayahara H., Tadasa K., and Tanaka H., Synthesis of n-kojic acid and n-kojic –amino acid-kojiate and their tyrosinase inhibityry activity. Bioorganic & Chemistry Letters.1996, 6 (12):1303-1308. Kotani T., Ichimoto I., Tatsumi C., and Fujita T., Bacteriostatic activities and metal chelation of kojic acid analogs. Agriculture and Biological. Chemistry.1976, 40 (4):765-770. Kren V., and Thiem J., Glycosylation employing bio-systems: from enzymes to whole cells. Chemical Society Reviews .1997, 26:463-473. Kurosu J., Sato T., and Yoshida K., Enzymatic synthesis of α-anomer-selective glucosylation of hydroquinone using lyophilized cells of Xanthomonas campestris WU-9701. Journal of Bioscience and Bioengineering.2002, 93:328-330. Kuwabara K., Watanabe Y., Adachi S., Nakanishi K., and Matsuno R., Synthesis of 6-O-unsaturated acyl L-ascorbates by innobilized lipase in acetone in the presence of molecular sieve. Biochemical Engineering Journal.2003, 16: 17-22. Lee D. Y., Fibroblasts play a stimulatory role in keratinocyte proliferation but an inhibitory role in melanocyte growth and pigmentation in a skin equivalent system from skin type IV. Archives Dermatological Research. 2003, 294: 444-446. Lee D. Y., The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in three-dimensional culture systems. Archives Dermatological Research. 2005, 296: 296-302. Lee S. B., Nam K. C., and Lee S. J., Antioxidative effects of glycosyl-ascorbic acids by maltogenic amylase to reduce lipid oxidation and volatiles production in cooked chicken meat. Bioscience, Biotechnology, and Biochemistry.2004, 68: 36-43. Lee S. L., and Chen W. C., Optimization of medium composition for the production of glucosyltransferase by Aspergillus niger with response surface methodology. Enzyme and Microbial Technology. 1997, 21:436-440. Liu K. J., and Shaw J. F., Lipase-catalyzed synthesos of kojic acid esters in organic solvents. Journal of American Oil Chemistry Society.1998, 75(11):1507-1511. Lortie R., Enzyme catalyzed esterification. Biotechnology Advances.1997, 15 (1):1-15. Luhong T., Hao Z., Shehate M. M., and Yunfei S., A kinetic study of the synthesis of ascorbate fatty acid esters catalyzed by immobilized lipase in organic media. Biotechnology and Applied. Biochemistry.2000, 32: 35-39. Maria M. E., Mechanisms of melanogenesis inhibition by tumor necrosis factor-α in B16/F10 mouse melanoma cells. European Journal of Biochemistry. 1998, 255:139-146. Maruyama T., Nakajima M., and Seki M., Effect of hydrocarbon-water interfaces on synthetic and hydrolytic activities of lipases. Journal of Bioscience and Bioengineering.2001,92 (3):242-247. McCleary B. V., and Gibson, T. S., Purification, properties, and industrial significance of transglucosidase from Aspergillus niger. Carbohydrate Research. 1989, 185:147-162. Nakagawa H., Dobashi Y., and Sato T., α-anomer-selective glucosylation of menthol with high yield through a crystal accumulation reaction using lyophilized cells of Xanthomonas campestris WU-9701. Journal of Bioscience and Bioengineering.2000, 89:138-144. Nakagawa H., Dobashi Y., and Ishihara K., Enzymatic synthesis of l-menthyl α-maltoside and l-menthyl α-maltooligoside from l-menthyl α-glucoside by cyclodextrin glucanotransferase. Journal of Bioscience and Bioengineering.2002, 94:119-123. Nakajima N., Ishihara K. and Hamada H., Functional glucosylation of kojic acid and daidzein with the Eucalyptus membrane-associated UDP-glucosyltransferase reaction system. Journal of Bioscience and Bioengineering.2001, 92: 469-471. Nalajima S., Funahashi H., and Yoshida T. Y., Xanthan gum production in a fermentor with twin impellers. Journal of Bioscience and Bioengineering.1990, 70:392-397. Nishimura T., Kometani T., and Takii H., Acceptor sepecificity in glucosylation reaction of Bacillus subtilis X-23 α-amylase towards various phenolic compounds and the structure of kojic acid glucoside. Journal of Bioscience and Bioengineering.1994, 78:37-41. Nishimura T., Kometani T., and Takii H., Purification and some properties of α-amylase from Bacillus subtilis X-23 that glucosylates phenolic compounds such as hydroquinone. Journal of Bioscience and Bioengineering.1994, 78:31-36. Nishimura T., Kometani T., and Takii H., Comparison of some properties of kojic acid glucoside with kojic acid. Nippon Shokuhin Kagaku Kogaku Kaishi.1995, 42: 602-607. Park S., Viklund F., Hult K., and Kazlauskas R. J., Ionic liquids create new opportunities for nonaqueous biocatalysis with polar substrates: acylation of glucose and ascorbic acid. American Chemical Society.2003, 225-238.Pleiss J., Fischer M., and Schmid R. D., Anatomy of lipase binding sites: the scissile fatty acid binding site. Chemistry and Physics of Lipids.1998, 93:67-80. Raku T., and Tokiwa Y., Regioselective synthesis of kojic acid esters by Bacillus subtilis protease. Biotechnology Letters.2003, 25:969-974. Régnier M., Vitamin C affects melanocyte dendricity via keratinocytes. Pigment of Cell Research. 2005, 18:389-390. Roomi M. W., House D., Maksic Z. B., and Tsao C. S., Growth suppression of malignant leukemia cell line in vitro by ascoebic acid and its derivatives. Cancer Letters.1998, 122:93-99. Rye A. J., Drozd J. W. and Jones C. W., Growth efficiency of Xanthomonas campestris in continuous culture. Journal of General Microbiology.1998, 134: 1055-1061. Sanna P. S., Vitamin C enhances differentiation of a contious keratinocyte cell line (REK) into epidermis with normal stratum corneum ultrastructure and funtional permeability barrier. Histochemistry of Cell Biology. 2001, 116:287-297. Saruno R., Kato F., and Ikeno T., Kojic acid, a tyrosinase inhibitor from Aspergillus albus. Agriculture and Biological Chemistry. 1979,43(6):1337-1338. Sato T., Nakagawa H., and Kurosu J., α-anomer-selective glucosylation of (+)-catechin by the crude enzyme, showing glucosyl transfer activity, of Xanthomonas campestris WU-9701. Journal of Bioscience and Bioengineering.2000, 90:625-630. Sato T., Nakagawa H., and Kurosu J., Selective α- glucosylation of eugenol by ?-glucosyl transfer enzyme of Xanthomonas campestris WU-9701. Journal of Bioscience and Bioengineering.2003, 96 (2):199-202. Seiberg M., Keratinocyte-Melanocyte interactions during melanosome transfer. Pigment of Cell Research. 2001, 14:236-242. Sharma R., Chisti Y., and Banerjee U. C., Production, purification, characterization and applications of lipases. Biotechnology Advances.2001, 19:627-662. Sulaimon S. S., and Kitchell B. E., The biology of melanocytes. Veterinary Dermatology.2003, 14, 57–65 Takebayashi J., Tai A., and Yamamoto I., Long-term radical scavenging activity of AA-2G and 6-Acyl-AA-2G against 1,1-Diphenyl-2-picrylhydrazyl.Biological&Pharmaceutical Bulletin.2002, 25 (11):1503-1505. Touyama R., Inoue K., Takeda Y., Yatsuzuka M., Ikumoto T., Moritome N., Shingu T., Yokoi T., Intuye H., Studies on the Blue Pigments Produced from Genipin and Methylamine. II. ON the Formation Mechanisms of Brownish-Red Intermediates Leading to the Blue Pigment Formation. Chem. Pharm. Bull. 1994, 42, 1571-1578. Viklund F., Alander J., and Hulm K., Antioxidative properties and enzymatic synthesis of ascorbyl fatty acid esters. Journal of American Oil Chemistry Society.2003, 80 (8):795-799. Villeneuve P., Muderhwa J. M., Graille J., and Haas M. J., Customizing lipases for biocatalysis: a survey of cjemical, physical and molecular biological approaches. Journal of Molecular Catalysis B:Enzymatic. 2000, 9:113-148. Watanabe Y., Kuwabara K., Adachi S., Nakanishi K., and Matsuno R., Production of saturated acyl L-ascorbate by immobilized lipase using a continuous stirred tank reactor. Journal of Agricultural and Food Chemistry.2003, 51:4628-4632. Wehtje E., Kaur J., Adlercreuttz P., Chand S., and Mattisson B., Water activity control in enzymatic esterification processes. Enzyme and Microbial Technology.1997, 21:502-510. Wu X. Y., Jääskeläinen S., and Linko Y.Y., An investigation of crude lipases for hydrolysis, esterification, and transesterification. Enzyme and Microbial Technology.1996, 19:226-231. Yamaguchi Y., Mesenchymal-epithelial interactions in the skin: Aiming for site-specific tissue regeneration. Journal of Dermatological Science. 2005, 40:1-9. Yamamoto I., Muto N., Murakami K., Suga S., and Yamaguchi H., L-ascorbic acid α-glucoside formed by regioselective transglucosylation with rat intestinal and rice seed α-glucosidases: Its improved stability and structure determination. Chem. Pharm. Bull. 1990, 38(11): 3020-3023. Yoshiko T. O., Mitsuru M., Masahiro N., Makiko Y., Namino S. T., and Harukazu F., 2-O-(β-D-glucopyranosyl) ascorbic acid, a novel ascorbic acid analogue isolated from Lycium fruit. Journal of Agricultural and Food Chemistry. 2004, 52:2092-2096. 呂鋒洲, 抗氧化酵素的介紹.自由基生物學與醫學創刊號. 1993, 1-7. 賴永沛, 世紀末最後的營養素-多元酚.食品資訊. 1999, 167(18): 49-53. |
_version_ |
1766287926713384960 |
spelling |
ftnthuniv:oai:nthur.lib.nthu.edu.tw:987654321/30703 2023-05-15T14:15:35+02:00 以全細胞糖化與脂肪脢酯化系統生產麴酸及L-維他命C衍生物之研究 Studies on Synthesis of Kojic Acid and L-Ascorbic Acid Derivatives Using Whole Cells for Glyosylation and Lipase for Esterification 謝欣如 Hsin-Ju Hsieh 吳文騰 朱一民 Wen-Teng Wu I-Ming Chu 2007 155 bytes text/html http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/30703 zh_TW chi 參考文獻 Arrigoni O., and Tullio M. C. D., Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta.2002, 1569:1-9. Bae H. K., Lee S. B., and Park C. S., Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability. Journal of Agricultural and Food Chemistry.2002, 50: 3309-3316. Chen C. S., Liu K. J., Lou1 Y. H., and Shieh C. J., Optimisation of kojic acid monolaurate synthesis with lipase PS from Pseudomonas cepacia. Journal of the Science of Food and Agriculture.2002, 82:601-605. Chen H. Y., and Yen G. C., Free Radicals, Antioxidant Defenses and Human Health. Nutrition Sciences Journal.1998, 23.(1):105-121. Duval C., Keratinocytes control the Pheo/Eumelanin ratio in cultured normal human melanocytes. Pigment of Cell Research. 2002, 15: 440-446. Curto E. V., Kwong C., and Hermersdörfer H., Inhibitors of mannalian melanocyte tyrosinase: In vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochemical Pharmacology.1999, 57: 663-672. Grüning B., and Hills G., Enzymatic preparation of regioselectivity fatty acid esters of ascorbic acid. United States Patent. 6,150,543.2000. Hassan M. A., Ismail F., Yamamoto S., Yamada H. and Nakanishi K., Enzymatic synthesis of Galactosylkojic acid with immobilized β-galactosidase from Bacillus circulans. Bioscience, Biotechnology, and Biochemistry.1995,59 (3):543-545. Hedley S. J., Fibroblasts play a regulatory role in the control of pigmentation in reconstructed human skin from types I and II. Pigment of Cell Research. 2002, 15:49-56. Hirobe T., Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment of Cell research.2004, 18:2-12 Huang S. C., Lin C. C., and Huang M. C., Simultaneous determination of magnesium ascorbyl phosphate, ascorbyl glucoside, kojic acid, arbutin and hydroquinone in skin whitening cosmetics by HPLC. Journal of Food and Drug Analysis.2004, 12: 13-18. Kamiya N., Murakami E., Goto M., and Nakashio F., Effect of using a co-solvent in the preparation of surfactant-coated lipases on catalytic activity in organic media. Journal of Fermentation and Bioengineering.1996, 82(1):37-41. Kim H., Choi J., Cho J. K., Kim S. Y., and Lee Y. S., Solid-phase synthesis of kojic acid-tripeptides and their tyrosinase inhibitory activity, storage stability and toxicity. Bioorganic & Medicinal Chemistry Letters.2004, 14:2843-2846. Kimura Y., Kanatani H., Shima M., Adachi S., and Matsuno R., Anti-oxidant activity of acyl ascorbates in intestinal epithelial cells. Biotechnology Letters.2003, 25:1723-1727. Kitao S., and Sekine H., Syntheses of two kojic acid glucosides with sucrose phosphorylase from Leuconostoc mesenteroides. Bioscience, Biotechnology, and Biochemistry.1994, 58: 419-420. Kobayashi T., Adachi S., Nakanishi K., and Matsuno R., Semi-continuous production of lauroyl kojic acid through lipase-catalyzed condensation in acetonitrile. Biochemical Engineering Journal.2001, 9:85-89. Kobayashi Y., Kayahara H., Tadasa K., and Tanaka H., Synthesis of n-kojic acid and n-kojic –amino acid-kojiate and their tyrosinase inhibityry activity. Bioorganic & Chemistry Letters.1996, 6 (12):1303-1308. Kotani T., Ichimoto I., Tatsumi C., and Fujita T., Bacteriostatic activities and metal chelation of kojic acid analogs. Agriculture and Biological. Chemistry.1976, 40 (4):765-770. Kren V., and Thiem J., Glycosylation employing bio-systems: from enzymes to whole cells. Chemical Society Reviews .1997, 26:463-473. Kurosu J., Sato T., and Yoshida K., Enzymatic synthesis of α-anomer-selective glucosylation of hydroquinone using lyophilized cells of Xanthomonas campestris WU-9701. Journal of Bioscience and Bioengineering.2002, 93:328-330. Kuwabara K., Watanabe Y., Adachi S., Nakanishi K., and Matsuno R., Synthesis of 6-O-unsaturated acyl L-ascorbates by innobilized lipase in acetone in the presence of molecular sieve. Biochemical Engineering Journal.2003, 16: 17-22. Lee D. Y., Fibroblasts play a stimulatory role in keratinocyte proliferation but an inhibitory role in melanocyte growth and pigmentation in a skin equivalent system from skin type IV. Archives Dermatological Research. 2003, 294: 444-446. Lee D. Y., The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in three-dimensional culture systems. Archives Dermatological Research. 2005, 296: 296-302. Lee S. B., Nam K. C., and Lee S. J., Antioxidative effects of glycosyl-ascorbic acids by maltogenic amylase to reduce lipid oxidation and volatiles production in cooked chicken meat. Bioscience, Biotechnology, and Biochemistry.2004, 68: 36-43. Lee S. L., and Chen W. C., Optimization of medium composition for the production of glucosyltransferase by Aspergillus niger with response surface methodology. Enzyme and Microbial Technology. 1997, 21:436-440. Liu K. J., and Shaw J. F., Lipase-catalyzed synthesos of kojic acid esters in organic solvents. Journal of American Oil Chemistry Society.1998, 75(11):1507-1511. Lortie R., Enzyme catalyzed esterification. Biotechnology Advances.1997, 15 (1):1-15. Luhong T., Hao Z., Shehate M. M., and Yunfei S., A kinetic study of the synthesis of ascorbate fatty acid esters catalyzed by immobilized lipase in organic media. Biotechnology and Applied. Biochemistry.2000, 32: 35-39. Maria M. E., Mechanisms of melanogenesis inhibition by tumor necrosis factor-α in B16/F10 mouse melanoma cells. European Journal of Biochemistry. 1998, 255:139-146. Maruyama T., Nakajima M., and Seki M., Effect of hydrocarbon-water interfaces on synthetic and hydrolytic activities of lipases. Journal of Bioscience and Bioengineering.2001,92 (3):242-247. McCleary B. V., and Gibson, T. S., Purification, properties, and industrial significance of transglucosidase from Aspergillus niger. Carbohydrate Research. 1989, 185:147-162. Nakagawa H., Dobashi Y., and Sato T., α-anomer-selective glucosylation of menthol with high yield through a crystal accumulation reaction using lyophilized cells of Xanthomonas campestris WU-9701. Journal of Bioscience and Bioengineering.2000, 89:138-144. Nakagawa H., Dobashi Y., and Ishihara K., Enzymatic synthesis of l-menthyl α-maltoside and l-menthyl α-maltooligoside from l-menthyl α-glucoside by cyclodextrin glucanotransferase. Journal of Bioscience and Bioengineering.2002, 94:119-123. Nakajima N., Ishihara K. and Hamada H., Functional glucosylation of kojic acid and daidzein with the Eucalyptus membrane-associated UDP-glucosyltransferase reaction system. Journal of Bioscience and Bioengineering.2001, 92: 469-471. Nalajima S., Funahashi H., and Yoshida T. Y., Xanthan gum production in a fermentor with twin impellers. Journal of Bioscience and Bioengineering.1990, 70:392-397. Nishimura T., Kometani T., and Takii H., Acceptor sepecificity in glucosylation reaction of Bacillus subtilis X-23 α-amylase towards various phenolic compounds and the structure of kojic acid glucoside. Journal of Bioscience and Bioengineering.1994, 78:37-41. Nishimura T., Kometani T., and Takii H., Purification and some properties of α-amylase from Bacillus subtilis X-23 that glucosylates phenolic compounds such as hydroquinone. Journal of Bioscience and Bioengineering.1994, 78:31-36. Nishimura T., Kometani T., and Takii H., Comparison of some properties of kojic acid glucoside with kojic acid. Nippon Shokuhin Kagaku Kogaku Kaishi.1995, 42: 602-607. Park S., Viklund F., Hult K., and Kazlauskas R. J., Ionic liquids create new opportunities for nonaqueous biocatalysis with polar substrates: acylation of glucose and ascorbic acid. American Chemical Society.2003, 225-238.Pleiss J., Fischer M., and Schmid R. D., Anatomy of lipase binding sites: the scissile fatty acid binding site. Chemistry and Physics of Lipids.1998, 93:67-80. Raku T., and Tokiwa Y., Regioselective synthesis of kojic acid esters by Bacillus subtilis protease. Biotechnology Letters.2003, 25:969-974. Régnier M., Vitamin C affects melanocyte dendricity via keratinocytes. Pigment of Cell Research. 2005, 18:389-390. Roomi M. W., House D., Maksic Z. B., and Tsao C. S., Growth suppression of malignant leukemia cell line in vitro by ascoebic acid and its derivatives. Cancer Letters.1998, 122:93-99. Rye A. J., Drozd J. W. and Jones C. W., Growth efficiency of Xanthomonas campestris in continuous culture. Journal of General Microbiology.1998, 134: 1055-1061. Sanna P. S., Vitamin C enhances differentiation of a contious keratinocyte cell line (REK) into epidermis with normal stratum corneum ultrastructure and funtional permeability barrier. Histochemistry of Cell Biology. 2001, 116:287-297. Saruno R., Kato F., and Ikeno T., Kojic acid, a tyrosinase inhibitor from Aspergillus albus. Agriculture and Biological Chemistry. 1979,43(6):1337-1338. Sato T., Nakagawa H., and Kurosu J., α-anomer-selective glucosylation of (+)-catechin by the crude enzyme, showing glucosyl transfer activity, of Xanthomonas campestris WU-9701. Journal of Bioscience and Bioengineering.2000, 90:625-630. Sato T., Nakagawa H., and Kurosu J., Selective α- glucosylation of eugenol by ?-glucosyl transfer enzyme of Xanthomonas campestris WU-9701. Journal of Bioscience and Bioengineering.2003, 96 (2):199-202. Seiberg M., Keratinocyte-Melanocyte interactions during melanosome transfer. Pigment of Cell Research. 2001, 14:236-242. Sharma R., Chisti Y., and Banerjee U. C., Production, purification, characterization and applications of lipases. Biotechnology Advances.2001, 19:627-662. Sulaimon S. S., and Kitchell B. E., The biology of melanocytes. Veterinary Dermatology.2003, 14, 57–65 Takebayashi J., Tai A., and Yamamoto I., Long-term radical scavenging activity of AA-2G and 6-Acyl-AA-2G against 1,1-Diphenyl-2-picrylhydrazyl.Biological&Pharmaceutical Bulletin.2002, 25 (11):1503-1505. Touyama R., Inoue K., Takeda Y., Yatsuzuka M., Ikumoto T., Moritome N., Shingu T., Yokoi T., Intuye H., Studies on the Blue Pigments Produced from Genipin and Methylamine. II. ON the Formation Mechanisms of Brownish-Red Intermediates Leading to the Blue Pigment Formation. Chem. Pharm. Bull. 1994, 42, 1571-1578. Viklund F., Alander J., and Hulm K., Antioxidative properties and enzymatic synthesis of ascorbyl fatty acid esters. Journal of American Oil Chemistry Society.2003, 80 (8):795-799. Villeneuve P., Muderhwa J. M., Graille J., and Haas M. J., Customizing lipases for biocatalysis: a survey of cjemical, physical and molecular biological approaches. Journal of Molecular Catalysis B:Enzymatic. 2000, 9:113-148. Watanabe Y., Kuwabara K., Adachi S., Nakanishi K., and Matsuno R., Production of saturated acyl L-ascorbate by immobilized lipase using a continuous stirred tank reactor. Journal of Agricultural and Food Chemistry.2003, 51:4628-4632. Wehtje E., Kaur J., Adlercreuttz P., Chand S., and Mattisson B., Water activity control in enzymatic esterification processes. Enzyme and Microbial Technology.1997, 21:502-510. Wu X. Y., Jääskeläinen S., and Linko Y.Y., An investigation of crude lipases for hydrolysis, esterification, and transesterification. Enzyme and Microbial Technology.1996, 19:226-231. Yamaguchi Y., Mesenchymal-epithelial interactions in the skin: Aiming for site-specific tissue regeneration. Journal of Dermatological Science. 2005, 40:1-9. Yamamoto I., Muto N., Murakami K., Suga S., and Yamaguchi H., L-ascorbic acid α-glucoside formed by regioselective transglucosylation with rat intestinal and rice seed α-glucosidases: Its improved stability and structure determination. Chem. Pharm. Bull. 1990, 38(11): 3020-3023. Yoshiko T. O., Mitsuru M., Masahiro N., Makiko Y., Namino S. T., and Harukazu F., 2-O-(β-D-glucopyranosyl) ascorbic acid, a novel ascorbic acid analogue isolated from Lycium fruit. Journal of Agricultural and Food Chemistry. 2004, 52:2092-2096. 呂鋒洲, 抗氧化酵素的介紹.自由基生物學與醫學創刊號. 1993, 1-7. 賴永沛, 世紀末最後的營養素-多元酚.食品資訊. 1999, 167(18): 49-53. 全細胞 酯化酵素 麴酸 維他命C 24 2007 ftnthuniv 2014-12-17T20:05:11Z 博士 國立清華大學 化學工程學系 GH000917611 本研究目的為運用酵素法合成麴酸與L-維他命C衍生物,改善其對光與熱的高度敏感性與減低對皮膚具刺激性的傷害,研究策略為利用脂解酵素酯化與全細胞糖化,來降低對皮膚的刺激傷害,以及增加衍生物對水溶性與酯溶性的溶解度、穩定度、產業應用性。 L-維他命C棕櫚酯生成條件:固定化酵素Candida antartica Lipase B (Novozym 435)為催化劑,L-維他命C與Palmitic acid反應基質比為1:4,50℃下以10 mL丙酮反應24小時,轉化率為47.6 %,若添加3g/L的分子篩,其轉化率可提高到61.3 %。Novozym 435重複使用10次來生產L-維他命C棕櫚酯的平均轉化率為44.5 %,分離純化平均純度為99.8 %,平均回收率為89.1 %。固定化脂解酵素大幅提昇懸浮態酵素的酯化活性,L-維他命C棕櫚酯轉化率為46 %。利用正己烷與低溫溶解度降低而析出L-維他命C棕櫚酯,其純化後純度為83 %,回收率為76 %。 L-維他命C糖苷生成條件:Aspergillus niger較佳的反應條件為1:9反應基質比,固定化細胞顆粒濃度4g/6 mL,0.02 M pH 5.5 Sodium acetate buffer,30℃下反應12小時,流速為12 ml/min,利用4 %褐藻膠固定化7g/L細胞為反應催化劑,固定化細胞顆粒重複使用13 次,其平均轉化率為72 %。α-Amylase、α-glucosidase、Glucoamylase及Glucosyltransferase在Pellet與Broth中根據培養天數來探討其酵素水解p-NGP之活性,Glucoamylase、α-glucosidase及Glucosyltransferase在Pellet與Broth中水解p-NGP之活性較α-Amylase顯著。Broth中的水解活性,隨著胞外酵素培養天數的增加而增加,Pellet中的水解活性,隨著胞外酵素培養天數的增加而減少。Aspergillus niger全細胞胞內與胞外糖化酵素之探討數據分析顯示,在Culture supernatant中,alpha-glucosidase在維他命C糖化反應中扮演最重要角色;在Pellet中,glucoamylase在維他命C糖化反應中是最主要的角色。分離純化L-維他命C醣苷,選用Amberlite? CG-400 anion exchange填充管柱,利用0.2 M NaCl溶液來脫附L-維他命C糖苷,合併使用Bio-Gel-P2填充管柱中,以二次水沖提出L-維他命C糖苷,其純度約為85 %,回收率約為75 %。 麴酸糖苷生成之條件:突變株Xanthomonas campestris以麥芽糖為碳源及NH4Cl為氮源,基質比1/8於0.01M HEPES緩衝液中,30℃反應28小時,轉化率82%。利用Sepharose G10管柱與活性碳管柱,以10%及70%酒精沖提出麴酸糖苷,純度為76%,回收率為71%。 黑色素細胞/纖維母細胞/角質細胞較佳的GAGs添加量分別為CS 0.8 mg/ml,DS 1.6 mg/ml,HA 0.1 mg/ml。Tyrosinase、tyrosinase-related protein 1、tyrosinase-related protein 2等基因中,添加2 mM Ascorbyl Glucoside的基因強度中,顯示Ascorbyl Glucoside對黑素色具有抑制的能力,而且tyr-1基因強度≧tyr-2基因強度,推測黑色素生成路徑是生成Eumelanin而不是Pheomelanin。Keratin 6、keratin 16、keratin 17等基因中,添加2 mM Ascorbyl Glucoside的基因強度中,顯示Ascorbyl Glucoside對角質素生成具有正向的影響效應。Procollagen基因中,添加2 mM Ascorbyl Glucoside的基因強度中,顯示Ascorbyl Glucoside對collageng生成具有正向的影響效應。 西方點墨法的實驗分析數據顯示在8mM的ascorbyl glucoside添加下,黑色素細胞/纖維母細胞/角質細胞在3D-scaffold內可生成較多的Collagen I。 3D-scaffold中,對照組中黑色素細胞/纖維母細胞/角質細胞生成的Collagen I隨著培養時間增加而增加。細胞染色角質素,由於角質素抗體無高度特異性,以致無法清楚分辨出纖維母細胞及角質細胞。 H&E細胞section染色圖顯示有投藥Ascorbyl glucoside的培養狀況下,細胞數生長的情況比不投藥Ascorbyl glucoside的好。 Alcian Blue細胞section染色顯示有投藥Ascorbyl glucoside的培養狀況下,新生細胞數的情況比不投藥Ascorbyl glucoside的好。 纖維母細胞投藥2mM培養,movie附加檔說明細胞遷移比未投藥的細胞遷移速度要快。說明ascorbyl glucoside有促進細胞遷移的效應,並且投藥的纖維母細胞定向性也大於未投藥的纖維母細胞,說明ascorbyl glucoside有促進細胞做直線遷移的效應。 Other/Unknown Material antartic* National Tsing Hua University Institutional Repository (NTHUR) |