以礦物碳酸化法封存CO2

CO2封存技術中,有礦物封存、生物封存、海洋封存、油槽及天然氣槽封存,因礦物封存具有1.產物不會造成二次污染2.礦物蘊藏量豐富3.反應過程為放熱反應。本研究目的為了解礦物鑑定分析資料及最佳碳酸化反應途徑並探討中鋼爐石為替代吸收劑之可行性。 本研究將CO2與天然矽酸鹽礦石及中鋼爐石之漿液進行碳酸化作用形成安定之碳酸鹽產物以達到CO2封存。其機制為CO2溶於水中形成HCO3後解離成H+及HCO3-,再與實驗試樣本體溶出Ca2+/Mg2+反應形成CaCO3或MgCO3沉澱,經TGA分析,500oC~850oC之重量損失可計算CO2轉換率。 本實驗針對反應之溫度、壓力、時間、試樣粒徑大小、液固比、攪拌...

Full description

Bibliographic Details
Main Authors: 徐啟龍, Hsu, Chi-Long
Other Authors: 蔣本基, 臺灣大學:環境工程學研究所
Format: Thesis
Language:Chinese
English
Published: 2006
Subjects:
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/62791
http://ntur.lib.ntu.edu.tw/bitstream/246246/62791/1/ntu-95-R93541204-1.pdf
id ftntaiwanuniv:oai:140.112.114.62:246246/62791
record_format openpolar
institution Open Polar
collection National Taiwan University Institutional Repository (NTUR)
op_collection_id ftntaiwanuniv
language Chinese
English
topic 二氧化碳封存
碳酸化
鈣矽石
中鋼爐石
CO2 sequestration
carbonation
wollastonite
BOF slag.
spellingShingle 二氧化碳封存
碳酸化
鈣矽石
中鋼爐石
CO2 sequestration
carbonation
wollastonite
BOF slag.
徐啟龍
Hsu, Chi-Long
以礦物碳酸化法封存CO2
topic_facet 二氧化碳封存
碳酸化
鈣矽石
中鋼爐石
CO2 sequestration
carbonation
wollastonite
BOF slag.
description CO2封存技術中,有礦物封存、生物封存、海洋封存、油槽及天然氣槽封存,因礦物封存具有1.產物不會造成二次污染2.礦物蘊藏量豐富3.反應過程為放熱反應。本研究目的為了解礦物鑑定分析資料及最佳碳酸化反應途徑並探討中鋼爐石為替代吸收劑之可行性。 本研究將CO2與天然矽酸鹽礦石及中鋼爐石之漿液進行碳酸化作用形成安定之碳酸鹽產物以達到CO2封存。其機制為CO2溶於水中形成HCO3後解離成H+及HCO3-,再與實驗試樣本體溶出Ca2+/Mg2+反應形成CaCO3或MgCO3沉澱,經TGA分析,500oC~850oC之重量損失可計算CO2轉換率。 本實驗針對反應之溫度、壓力、時間、試樣粒徑大小、液固比、攪拌速率、漿液組成成分作一系列之探討研究。由實驗結果顯示,反應溫度150oC、反應壓力1250psig、反應時間6小時、粒徑顆粒大小<44μm、L/S=10g/g、以去離子水為作為試樣漿液,鈣矽石及中鋼爐石之轉換率皆可達99%以上。 此外,粒徑縮減可增加反應之比表面積,有效增加CO2轉換率,相同反應條件下,鈣矽石<44μm之轉換率較88~125μm約增加25%。中鋼爐石<44μm之轉換率較53~62μm約增加2%。攪拌速率及液固比對轉換率無明顯影響,且使用1M NaHCO3為試樣漿液組成並不會增加CO2轉換率,反而造成轉換率下降。 CO2 is sealed up for safekeeping in technology, it is sealed up for safekeeping that there is mineral, the living beings seal up for safekeeping, seal up for safekeeping in the ocean, the oil groove and natural gas trough are sealed up for safekeeping, because the mineral is sealed up for safekeeping have 1. The secondary pollution that the result will not cause is 2. The reserves of mineral are abundant 3. The response course is the exothermic reaction. This research purpose, in order to understand mineral determine that analyses materials and the best carbonic acid reflect the steel stove stone in way and discussion in order to substitute the feasibility of the absorbent. Research this hit CO2 and natural silicate ore steel size, stove of stone carry on carbonic acid function form stable carbonate result with reach CO2 seal. Solve before becoming H+ and HCO3- after its mechanism dissolves and forms HCO3 in water for CO2, it is with experiment sample noumenonn dissolve been and then let's appear Ca2+ /Mg2+ the response form because there aren't CaCO3 or MgCO3, analyse by TGA 500℃ again can calculate CO2 conversion ratio of loss of weight of 850℃. This temperature, the pressure, time, sample grains of foot-path size when there is to reacting experiment, it is the firm for liquid than, mix there aren't speed, size. Shown by the experimental result, response temperature 150℃, response pressure 1250psig, 6 hours such as time such as response, a grain of foot-path particle size <44¦Ì m, L/S=10g/g, regard deionized water as as sample size, wollastonite and hit steel conversion ratio, stove of stone can more than 99% all. In addition grain is it can is it react than the surface area to increase to reduce directly, increase CO2 conversion ratio effectively, under the same response condition, the wollastonite the conversion ratio of 44μm nearly increases by 25% than 88~125μm. the conversion ratio of 44μm nearly increases by 2% than 53~62μm on the steel stove stone in China. It doesn't obviously influence than the conversion ratio to mix the speed and liquid firmly, and use 1M NaHCO3 to make up and will not increase CO2 conversion ratio for the sample size, cause the conversion ratio to drop instead. 第一章 緒論 1-1 研究背景 1-1 1-2 研究目的 1-5 第二章 文獻回顧 2-1 礦物選擇及其熱力學性質 2-1 2-1-1 元素選擇 2-1 2-1-2 礦物選擇 2-1 2-1-3 基本熱力學性質 2-3 2-2 矽酸鹽礦石簡介及其前處理技術 2-6 2-2-1 矽酸鹽礦物介紹 2-6 2-2-2 前處理技術 2-8 2-3 碳酸化反應途徑(Process routes) 2-11 2-3-1 直接碳酸化(Direct carbonation) 2-11 2-3-2 間接碳酸化(Indirect carbonation) 2-17 2-4 廢棄物資源化及產物再利用性 2-23 第三章 實驗設備與方法 3-1 研究流程圖 3-1 3-2 試藥來源及吸收劑製備過程 3-2 3-2-1 試藥來源 3-2 3-2-2 吸收劑試樣製備過程 3-3 3-3 物性及成分分析 3-5 3-3-1 密度測量 3-5 3-3-2 粒徑分佈 3-5 3-3-3 比表面積測量 3-6 3-3-4 孔徑測量 3-6 3-3-5 掃描式電子顯微鏡(SEM)觀察 3-7 3-3-6 X-Ray 繞射分析 3-7 3-3-7 成分分析 3-8 3-4 碳酸化實驗 3-9 3-4-1 液相碳酸化實驗裝置 3-10 3-4-2 碳酸化實驗操作步驟 3-11 3-4-3 轉換率計算 3-13 第四章 結果與討論 4-1 物性與組成成分析實驗設備與方法 4-1 4-1-1 預備實驗—矽酸鹽礦石及中鋼爐石碳酸化反應比較 4-1 4-1-2 粒徑分析 4-6 4-1-3 密度測量 4-6 4-1-4 比表面積測定 4-6 4-1-5 成份分析 4-6 4-2 鈣矽石與CO2之碳酸化反應 4-9 4-2-1 反應時間效應 4-9 4-2-2 反應溫度效應 4-11 4-2-3 反應壓力效應 4-13 4-2-4 粒徑大小效應 4-16 4-2-5 攪拌速率效應 4-17 4-2-6 液固比大小效應 4-18 4-2-7 漿液成份改變效應 4-19 4-2-8 反應前後之SEM圖片 4-21 4-2-9 反應前後之XRD繞射分析 4-25 4-3 中鋼轉爐石石與CO2之碳酸化反應 4-28 4-3-1 反應時間效應 4-28 4-3-2 反應溫度效應 4-32 4-3-3 反應壓力效應 4-34 4-3-4 粒徑大小效應 4-36 4-3-5 攪拌速率效應 4-37 4-3-6 液固比大小效應 4-39 4-3-7 漿液成份改變效應 4-40 4-3-8 反應前後之XRD繞射分析 4-42 第五章 結論與建議 5-1 結論 5-1 5-2 建議 5-2 參考文獻 附錄 圖目錄 Figure 1-1 CO2 sequestration options. 1-3 Figure 2-1 Qualitative illustration of thermodynamic stability of carbonated from of carbon. 2-3 Figure 2-2 Process flow diagram based on. 2-17 Figure 3-1 Research flowchart. 3-1 Figure 3-2 The flowchart of preparing absorbent. 3-4 Figure 3-3 Density measurement apparatus. 3-5 Figure 3-4 Particle size measurement apparatus. 3-6 Figure 3-5 Specific area measurement apparatus. 3-7 Figure 3-6 Pore size measurement apparatus. 3-7 Figure 3-7 SEM measurement apparatus. 3-8 Figure 3-8 XRD measurement apparatus. 3-8 Figure 3-9 The experimental apparatus of the carbonation batch reactor. 3-10 Figure 3-10 Flowchart of experiments to determine the best carbonation reaction conditions. 3-12 Figure 4-1 TGA curve of fresh and carbonated serpentine. 4-2 Figure 4-2 TGA curve of fresh and carbonated wollastonite. 4-3 Figure 4-3 TGA curve of fresh and carbonated BOF slag. 4-5 Figure 4-4 TGA curve of carbonated wollastonite at different reaction time. 4-10 Figure 4-5 Influence of reaction time on the carbonation conversion of wollastonite. 4-10 Figure 4-6 TGA curve of carbonated wollastonite at different reaction temperatures. 4-12 Figure 4-7 Influence of temperature on the carbonation conversion of wollastonite. 4-12 Figure 4-8 Influence of pressure and temperature on the carbonation conversion of wollastonite. 4-15 Figure 4-9 Influence of pressure and temperature on the carbonation conversion of wollastonite. 4-15 Figure 4-10 Influence of particle size on the carbonation conversion of wollastonite. 4-17 Figure 4-11 Influence of stirring power on the carbonation conversion of wollastonite. 4-18 Figure 4-12 Influence of liquid to solid ratio on the carbonation conversion of wollastonite. 4-19 Figure 4-13 Influence of slurry composition on the carbonation conversion of wollastonite. 4-20 Figure 4-14 Scanning electron micrographs. 4-22 Figure 4-15 Scanning electron micrographs. 4-23 Figure 4-16 Scanning electron micrographs. 4-24 Figure 4-17 XRD spectra for both fresh and carbonated wollastonite with peak identifications. 4-26 Figure 4-18 XRD spectra for both fresh and carbonated wollastonite with peak identifications. 4-27 Figure 4-19 TGA curve of carbonated BOF slag at different reaction time. 4-29 Figure 4-20 Influence of reaction time on the carbonation conversion of wollastonite and BOF slag. 4-29 Figure 4-21 The predictive decay model at different reaction time. 4-31 Figure 4-22 TGA curve of carbonated BOF slag at different reaction temperatures. 4-33 Figure 4-23 Influence of temperature on the carbonation conversion of BOF slag and wollastonite. 4-33 Figure 4-24 Influence of pressure and temperature on the carbonation conversion of BOF slag. 4-35 Figure 4-25 Influence of pressure and temperature on the carbonation conversion of BOF slag. 4-35 Figure 4-26 Influence of particle size on the carbonation conversion of BOF slag. 4-37 Figure 4-27 Influence of stirring power on the carbonation conversion of BOF slag. 4-38 Figure 4-28 Influence of liquid to solid ratio on the carbonation conversion of BOF slag. 4-39 Figure 4-29 Influence of slurry composition on the carbonation conversion of BOF slag. 4-40 Figure 4-30 XRD spectra for both fresh and carbonated BOF slag with peak identifications. 4-43 Figure 4-31 XRD spectra for both fresh and carbonated BOF slag with peak identifications. 4-44
author2 蔣本基
臺灣大學:環境工程學研究所
format Thesis
author 徐啟龍
Hsu, Chi-Long
author_facet 徐啟龍
Hsu, Chi-Long
author_sort 徐啟龍
title 以礦物碳酸化法封存CO2
title_short 以礦物碳酸化法封存CO2
title_full 以礦物碳酸化法封存CO2
title_fullStr 以礦物碳酸化法封存CO2
title_full_unstemmed 以礦物碳酸化法封存CO2
title_sort 以礦物碳酸化法封存co2
publishDate 2006
url http://ntur.lib.ntu.edu.tw/handle/246246/62791
http://ntur.lib.ntu.edu.tw/bitstream/246246/62791/1/ntu-95-R93541204-1.pdf
genre Carbonic acid
genre_facet Carbonic acid
op_relation 英文文獻 1. Blencoe, J.G., L.M. Anovitz, D.A. Palmer, and J.S. Beard ., Carbonation of calcium silicates for long-term CO2 sequestration; 2nd Annual Conference on Carbon Sequestration, Alexandria, VA, USA. 2003 2. Blencoe, J.G., D.A. Palmer, L.M. Anovitz, and J.S. Beard., Carbonation of metal silicates for long-term CO2 sequestration; Patent WO200409043. 2004 3. Butt, D.P., K.S. Lackner, and C.H. Wendt: The kinetics of binding carbon dioxide in magnesium carbonate; 23th international conference on coal utilization and fuel systems, Clearwater, FL, USA. 1998 4. Butt, D.P., K.S. Lackner, C.H. Wendt, Y.S. Park, A. Bejamin, D.M. Harradine, T. Holesinger, M. Rising, and K. Nomura: A method for permanent disposal of CO2 in solid form; World Resource Review. 1997., 9 (3): 324-336. 5. Carey, J.W., E.P. Rosen, D. Bergfeld, S.J. Chipera, D.A. Counce, M.G. Snow, H.-J. Ziock, and G.D. Guthrie., Experimental studies of the serpentine carbonation reaction; 28th international technical conference on coal utilization & fuel systems1, Clearwater, FL, USA. 2003, 331-340. 6. Chizmeshya, A.V.G., M.J. McKelvy, D. Gormley, M. Kocher, R. Nunez, Y.-C. Kim, and R. Carpenter ., CO2 mineral carbonation processes in olivine feedstock:insights from the atomic scale simulation; 29th international technical conference on coal utilization & fuel systems, Clearwater, FL, USA. 2004 7. Chizmeshya, A.V.G., M.J. McKelvy, G. Wolf, R. Sharma, O.F. Sankey, H. Bearat, J. Diefenbacher, and R.W. Carpenter., Quantum simulation studies of olivine mineral carbonation; 28th international technical conference on coal utilization & fuel systems, Clearwater, FL, USA. 2003 8. Chizmeshya, A.V.G., O.F. Sankey, M.J. McKelvy, R. Sharma, R.W. Carpenter, G.H. Wolf,H. Bearat, and J. Diefenbacher ., Atomic-level understanding of CO2 mineral carbonation mechanisms from advanced computational modelling; 27th international technical conference on coal utilization and fuel systems, Clearwater, FL, USA. 2002 9. Dahlin, D.C., W.K. O'Connor, D.N. Nilsen, G.E. Rush, R.P. Walters, and P.C. Turner., A method for permanent CO2 sequestration: supercritical CO2 mineral carbonation; 17th annual international Pittsburgh coal conference, Pittsburgh, PA, USA. 2002 10. Devoldere, K., H. Weyten, K. Vrancken, and L. Ginneken van., accelerated weathering of MSWI bottom ash by means of liquid and supercritical CO2; 7th meeting on supercritical fluids, Antibes, France. 2002 11. Fauth, D.J., J.P. Baltrus, J.P. Knoer, Y. Soong, B.H. Howard, W.J. Graham, M.M. Maroto-Valer, and J.M. Andresen., Conversion of silicate minerals with carbon dioxide producing environmentally benign and stable carbonates; Preprints of papers, Division of Fuel Chemistry, American Chemical Society. 2001 46 (1): 278-279. 12. Fauth, D.J., P.M. Goldberg, J.P. Knoer, Y. Soong, W.K. O'Connor, D.C. Dahlin, D.N. Nilsen, R.P. Walters , K.S. Lackner, H.-J. Ziock, M.J. McKelvy, and Z.-Y. Chen., Carbon dioxide storage as mineral carbonates; Preprints of symposia -American Chemical Society, Division Fuel Chemistry , 2000.45 (4), 708-712. 13. Fauth, D.J., Y. Soong, and C.M. White., Carbon sequestration utilizing industrial solid residues; Preprints Symposium. 2002 47 (1), 37-38. 14. Fujii, M., A. Yamasaki, M. Kakizawa, and Y. Yanagisawa., Reduction of CO2emission by treatment of waste concrete via an artificial process; Symposium -American Chemical Society, Division Fuel Chemistry. 2001, 46 (1): 75-77. 15. Gerdemann, S.J., D.C. Dahlin, and W.K. O'Connor., Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals; 6th international conference on greenhouse gas control technologies, Kyoto, Japan. 2002 16. Gerdemann, S.J., D.C. Dahlin, W.K. O'Connor, L.R. Penner, and G.E. Rush., Factors affecting ex-situ aqueous mineral carbonation using calcium and magnesium silicate minerals; 29th international technical conference on coal utilization & fuel systems, Clearwater, FL, USA. 2004 17. Goff, F., G. Guthrie, and K.S. Lackner., Carbon dioxide sequestering potential of ultramafic rocks; 23rd annual technical conference on coal utilization and fuel systems, Clearwater, FL, USA. 1998 18. Goldberg, P., C. Zhong-Ying, W.K. O'Connor, and R.P. Walters., CO2 mineral sequestration studies in US; 1st national conference on carbon sequestration, Washington DC, USA. 2001 19. Huijgen, W.J.J., R.N.J. Comans., Carbon dioxide sequestration by mineral carbonation, literature review; Energy research Centre of the Netherlands, 2003 ECN-C--03-016, Petten, The Netherlands. 20. Huijgen, W.J.J. and R.N.J. Comans., Mineral CO2 sequestration in alkaline solid residues; 7th international conference on greenhouse gas control technologies, Vancouver, BC, Canada. 2004 21. Huijgen, W.J.J., R.N.J. Comans., Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process, Chemical Engineering Science. 2006, 61. 4242-4251. 22. Jones, J.R., J. Knoer, Y. Soong, D.K. Harrison, and D. Fauth., Low temperature – low pressure experimental design to form carbonate minerals under saturated CO2 conditions; 17th annual international Pittsburgh coal conference, Pittsburgh, PA, USA. 2000 23. Kakizawa, M., A. Yamasaki, and Y. Yanagisawa., A new CO2 disposal process using artificial rock weathering of calcium silicate accelerated by acetic acid; Energy. 2001, (26): 341-354. 24. Kohlmann, J., Removal of CO2 from flue gases using magnesium silicates in Finland; Helsinki University of Technology, TKK-ENY-3, Espoo, Finland. 2001 25. Kojima, T., A. Nagamine, N. Ueno, and S. Uemiya., Absorption and fixation of carbon dioxide by rock weathering; Energy Conversion and Management. 1997. 38: S461-466. 26. Koljonen, T., H. Siikavirta, and R. Zevenhoven., CO2 capture, storage and utilization in Finland, Technology and Climate Change CLIMTECH 1999-2002, 2002. Tekes, Finland. 27. Koljonen, T., H. Siikavirta, R. Zevenhoven, and I. Savolainen., CO2 capture, storage and reuse potential in Finland; Energy., 2004 29: 1521-1527. 28. Lackner, K.S., Carbonate chemistry for sequestering fossil carbon; Annual Review of Energy and the Environment. 27: 193-232. 29. Lackner, K.S., D.P. Butt, and C.H. Wendt., Magnesite disposal of carbon dioxide; 22th international conference on coal utilization and fuel systems, Clearwater, FL, USA. 1997 30. Lackner, K.S., D.P. Butt, and C.H. Wendt ., Progress on binding CO2 in mineral substrates; Energy Conversion and Management. 1997. 38: S259-264. 31. Lackner, K.S., D.P. Butt, C.H. Wendt, F. Goff, and G. Guthrie., Carbon dioxide disposal in mineral form, Keeping coal competitive.; Los Alamos National Laboratory, LA-UR-97-2094, Los Alamos, NM, USA. 1997 32. Lackner, K.S., D.P. Butt, C.H. Wendt, and D.H. Sharp., Carbon dioxide disposal in solid form; 21st international conference on coal utilization and fuel systems, Clearwater, FL, USA. 1996 33. Lackner, K.S., C.H. Wendt, D.P. Butt, E.L. Joyce, and D.H. Sharp., Carbon dioxide disposal in carbonate minerals; Energy, 1995. 20 (11): 1153-1170. 34. Lackner, K.S. and H.J. Ziock., From low to no emissions; Modern Power Systems, 2000 20(3): 31-32. 35. Maroto-Valer, M.M., J.M. Andresen, Y. Zhang, and M.E. Kuchta., Integrated carbonation: a novel concept te develop a CO2 sequestration module for vision 21 power plants; Pennsylvania State University, Final report DOE DE-FG26-01NT41286, University Park, PA, USA. 2003 36. Maroto-Valer, M.M., D.J. Fauth, M.E. Kuchta, Y. Zhang, J.M. Andresen, and Y. Soong., Study of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration; 18th annual international Pittsburgh coal conference, Newcastle, Australia. 2001 37. Maroto-Valer, M.M., M.E. Kuchta, Y. Zhang, and J.M. Andrésen., Integrated carbonation: a novel concept to develop a CO2 sequestration module for power plants; 6th international conference on greenhouse gas control technologies, Kyoto, Japan. 2002 38. Maroto-Valer, M.M., Y. Zhang, M.E. Kuchta, J.M. Andresen, and D.J. Fauth., Process for sequestering carbon dioxide and sulfur oxide; Patent. 2004 WO2004098740. 39. McKelvy, M.J., A.V.G. Chizmeshya, J. Diefenbacher, H. Bearat, and G. Wolf., Exploration of the role of heat activation in enhancing serpentine carbon sequestration reactions; Environmental Science and Technology, 2004.38 (24): 6897-6903. 40. McKelvy, M.J., R. Sharma, R.W. Carpenter, G. Wolf, A.V.G. Chizmeshya, H. Bearat, and J. Diefenbacher., Developing a mechanistic understanding of serpentine CO2 mineral carbonation reaction processes; 27th international conference on coal utilization and fuel systems, Clearwater, FL, USA. 2002 41. Mesters, C.M.A., J.J.C. Geerlings, and H. Oosterbeek., Process for mineral carbonation with carbon dioxide; Patent, 2002. WO02085788. 42. Nelson, M.G., Carbon dioxide sequestration by mechanochemical carbonation of mineral silicates; University of Utah, Final report DOE FG26-02NT41547, Salt Lake City, UT, USA. 2004 43. O'Connor, W.K., D.C. Dahlin, S.J. Gerdemann, G.E. Rush, and L.R. Penner., Energy and economic considerations for ex-situ aqueous mineral carbonation; 29th international technical conference on coal utilization & fuel systems, Clearwater, FL, USA. 2004 44. O'Connor, W.K., D.C. Dahlin, D.N. Nilsen, S.J. Gerdemann, G.E. Rush, R.P. Walters, andP.C. Turner., Research status on the sequestration of carbon dioxide by direct aqueous mineral carbonation; 18th annual international Pittsburgh coal conference, Newcastle, Australia. 2001 45. O'Connor, W.K., D.C. Dahlin, D.N. Nilsen, G.E. Rush, R.P. Walters, and P.C. Turner., CO2 storage in solid form: a study of direct mineral carbonation; 5th international conference on greenhouse gas technologies, Cairns, Australia. 2000. 46. O'Connor, W.K., D.C. Dahlin, D.N. Nilsen, G.E. Rush, R.P. Walters, and P.C. Turner., Carbon dioxide sequestration by direct mineral carbonation: results from recent studies and current status; 1st national Conference on Carbon sequestration, Alexandria, VA, USA. 2001 47. O'Connor, W.K., D.C. Dahlin, G.E. Rush, C.L. Dahlin, and W.K. Collins., Continuous dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products; SME Annual Meeting & Exhibit, Denver, CO, USA. 2001 48. Park, A.-H.A., R. Jadhav, and L.-S. Fan., CO2 mineral sequestration in a highpressure,high temperature three-phase fluidised bed reactor; 20th annual international Pittsburgh coal conference, Pittsburgh, PA, USA. 2003 49. Park, A.-H.A., R. Jadhav, and L.-S. Fan., CO2 mineral sequestration: chemically enhanced aqueous carbonation of serpentine; Canadian journal of chemical engineering. 2003. 81 (3): 885 -890. 50. Penner, L.R., W.K. O'Connor, D.C. Dahlin, S.J. Gerdemann, and G.E. Rush., Mineral carbonation: Energy costs of pretreatment options and insights gained from flow loop reaction studies; 3rd annual conference on carbon sequestration, Alexandria, VA, USA. 2004 51. Schulze, R.K., M.A. Hill, R.D. Field, P.A. Papin, R.J. Hanrahan, and D.D. Byler., Characterization of carbonated serpentine using XPS and TEM; Energy Conversion and Management, 2004. 45 (20): 3169-3179. 52. Slawomir, W.H., William D. B., and Leo C. F., Varibility of ozone reaction kinetics in batch and continuous flow reactor. Water Research. 1999, 33. 2130-2318. 52. Stolaroff, J.K., G. Lowry, and D. Keith., Using CaO- and MgO-rich industrial waste streams for carbon sequestration; 2nd annual conference on carbon sequestration, Alexandria, VA, USA. 2003. 53. Stolaroff, J.K., G.V. Lowry, and D.W. Keith., Using CaO- and MgO-rich industrial waste streams for carbon sequestration; Energy Conversion and Management. 2004, 46(5): 687-699. 54. Summers, C., D.C. Dahlin, and T. Ochs., The effect of SO2 on mineral carbonation in batch tests; 29th international technical conference on coal utilization & fuel systems, Clearwater, FL, USA. 2004 55. Wendt, C.H., D.P. Butt, K.S. Lackner, R. Vaidya, and H.-J. Ziock., Thermodynamic calculations for acid decomposition of serpentine and olivine in MgCl2 melts III; Los Alamos National Laboratory, LA-UR-98-5633, Los Alamos, NM, USA. 1998 56. Wendt, C.H., D.P. Butt, K.S. Lackner, and H.-J. Ziock., Thermodynamic calculations for acid decomposition of serpentine and olivine in MgCl2 melts I; Los Alamos National Laboratory, LA-UR-98-4528, Los Alamos, NM, USA. 1998 57. Wu, J.C.S., J.-D. Sheen, S.-Y. Chen, and Y.-C. Fan., Feasibility of CO2 fixation via artificial rock weathering; Industrial and engineering chemistry research. 2001, 40 (18):3902-3905. 58. Zevenhoven, R., J. Kohlmann, and A. Mukherjee., Direct dry mineral carbonation for CO2 emissions reduction in Finland; 27th international conference on coal utilization and fuel systems, Clearwater, FL, USA. 2002 59. Zevenhoven, R. and S. Teir., Long-term storage of CO2 as magnesium carbonate in Finland; 3rd annual conference on carbon capture and sequestration, Alexandria, VA, USA. 2004 60. Zhang, Q., K. Sugiyama, and F. Saito., Enhancement of acid extraction of magnesium and silicon from serpentine by mechanochemical treatment;Hydrometallurgy. 1996, 45: 323-331. 61. Zhenhao, D., Rui, S., An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 k and from 0 to 2000 bar, chemical geology. 2003, 193: 257-271. 中文文獻 1. 李易書,”臭氧化小分子有機前質對消毒副產物生成的影響”, 碩士論文, 國立台灣大學, 台北, 台灣(2005) 2. 林俊佑,”矽酸鹽礦石於水溶液中吸收二氧化化碳之研究-矽酸鹽礦石之溶解”, 碩士論文, 國立台灣大學, 台北, 台灣(2001) 3. 卓啟正,”矽酸鹽礦物泥漿吸收二氧化碳之研究-矽酸鹽礦物溶解之研究”, 碩士論文, 國立台灣大學, 台北, 台灣(2000) 4. 陳威仁,”超臨界二氧化碳轉化為碳酸鹽之探討”, 碩士論文, 國立台灣大學, 台北, 台灣(2003) 5. 陳培源, 劉德慶, 黃怡禎, 臺灣之礦物, 經濟部中央地質調查所. (2004) 6. 劉韻萍,”矽酸鹽礦物溶解之研究”, 碩士論文, 國立台灣大學, 台北, 台灣(2001) 7. 蕭國源,”固體吸收劑二氧化碳吸收能力之評估”, 碩士論文, 國立台灣大學, 台北, 台灣(2000)
_version_ 1766388169933062144
spelling ftntaiwanuniv:oai:140.112.114.62:246246/62791 2023-05-15T15:53:07+02:00 以礦物碳酸化法封存CO2 CO2 sequestration by mineral carbonation 徐啟龍 Hsu, Chi-Long 蔣本基 臺灣大學:環境工程學研究所 2006 7533536 bytes application/pdf http://ntur.lib.ntu.edu.tw/handle/246246/62791 http://ntur.lib.ntu.edu.tw/bitstream/246246/62791/1/ntu-95-R93541204-1.pdf zh-TW en_US chi eng 英文文獻 1. Blencoe, J.G., L.M. Anovitz, D.A. Palmer, and J.S. Beard ., Carbonation of calcium silicates for long-term CO2 sequestration; 2nd Annual Conference on Carbon Sequestration, Alexandria, VA, USA. 2003 2. Blencoe, J.G., D.A. Palmer, L.M. Anovitz, and J.S. Beard., Carbonation of metal silicates for long-term CO2 sequestration; Patent WO200409043. 2004 3. Butt, D.P., K.S. Lackner, and C.H. Wendt: The kinetics of binding carbon dioxide in magnesium carbonate; 23th international conference on coal utilization and fuel systems, Clearwater, FL, USA. 1998 4. Butt, D.P., K.S. Lackner, C.H. Wendt, Y.S. Park, A. Bejamin, D.M. Harradine, T. Holesinger, M. Rising, and K. Nomura: A method for permanent disposal of CO2 in solid form; World Resource Review. 1997., 9 (3): 324-336. 5. Carey, J.W., E.P. Rosen, D. Bergfeld, S.J. Chipera, D.A. Counce, M.G. Snow, H.-J. Ziock, and G.D. Guthrie., Experimental studies of the serpentine carbonation reaction; 28th international technical conference on coal utilization & fuel systems1, Clearwater, FL, USA. 2003, 331-340. 6. Chizmeshya, A.V.G., M.J. McKelvy, D. Gormley, M. Kocher, R. Nunez, Y.-C. Kim, and R. Carpenter ., CO2 mineral carbonation processes in olivine feedstock:insights from the atomic scale simulation; 29th international technical conference on coal utilization & fuel systems, Clearwater, FL, USA. 2004 7. Chizmeshya, A.V.G., M.J. McKelvy, G. Wolf, R. Sharma, O.F. Sankey, H. Bearat, J. Diefenbacher, and R.W. Carpenter., Quantum simulation studies of olivine mineral carbonation; 28th international technical conference on coal utilization & fuel systems, Clearwater, FL, USA. 2003 8. Chizmeshya, A.V.G., O.F. Sankey, M.J. McKelvy, R. Sharma, R.W. Carpenter, G.H. Wolf,H. Bearat, and J. Diefenbacher ., Atomic-level understanding of CO2 mineral carbonation mechanisms from advanced computational modelling; 27th international technical conference on coal utilization and fuel systems, Clearwater, FL, USA. 2002 9. Dahlin, D.C., W.K. O'Connor, D.N. Nilsen, G.E. Rush, R.P. Walters, and P.C. Turner., A method for permanent CO2 sequestration: supercritical CO2 mineral carbonation; 17th annual international Pittsburgh coal conference, Pittsburgh, PA, USA. 2002 10. Devoldere, K., H. Weyten, K. Vrancken, and L. Ginneken van., accelerated weathering of MSWI bottom ash by means of liquid and supercritical CO2; 7th meeting on supercritical fluids, Antibes, France. 2002 11. Fauth, D.J., J.P. Baltrus, J.P. Knoer, Y. Soong, B.H. Howard, W.J. Graham, M.M. Maroto-Valer, and J.M. Andresen., Conversion of silicate minerals with carbon dioxide producing environmentally benign and stable carbonates; Preprints of papers, Division of Fuel Chemistry, American Chemical Society. 2001 46 (1): 278-279. 12. Fauth, D.J., P.M. Goldberg, J.P. Knoer, Y. Soong, W.K. O'Connor, D.C. Dahlin, D.N. Nilsen, R.P. Walters , K.S. Lackner, H.-J. Ziock, M.J. McKelvy, and Z.-Y. Chen., Carbon dioxide storage as mineral carbonates; Preprints of symposia -American Chemical Society, Division Fuel Chemistry , 2000.45 (4), 708-712. 13. Fauth, D.J., Y. Soong, and C.M. White., Carbon sequestration utilizing industrial solid residues; Preprints Symposium. 2002 47 (1), 37-38. 14. Fujii, M., A. Yamasaki, M. Kakizawa, and Y. Yanagisawa., Reduction of CO2emission by treatment of waste concrete via an artificial process; Symposium -American Chemical Society, Division Fuel Chemistry. 2001, 46 (1): 75-77. 15. Gerdemann, S.J., D.C. Dahlin, and W.K. O'Connor., Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals; 6th international conference on greenhouse gas control technologies, Kyoto, Japan. 2002 16. Gerdemann, S.J., D.C. Dahlin, W.K. O'Connor, L.R. Penner, and G.E. Rush., Factors affecting ex-situ aqueous mineral carbonation using calcium and magnesium silicate minerals; 29th international technical conference on coal utilization & fuel systems, Clearwater, FL, USA. 2004 17. Goff, F., G. Guthrie, and K.S. Lackner., Carbon dioxide sequestering potential of ultramafic rocks; 23rd annual technical conference on coal utilization and fuel systems, Clearwater, FL, USA. 1998 18. Goldberg, P., C. Zhong-Ying, W.K. O'Connor, and R.P. Walters., CO2 mineral sequestration studies in US; 1st national conference on carbon sequestration, Washington DC, USA. 2001 19. Huijgen, W.J.J., R.N.J. Comans., Carbon dioxide sequestration by mineral carbonation, literature review; Energy research Centre of the Netherlands, 2003 ECN-C--03-016, Petten, The Netherlands. 20. Huijgen, W.J.J. and R.N.J. Comans., Mineral CO2 sequestration in alkaline solid residues; 7th international conference on greenhouse gas control technologies, Vancouver, BC, Canada. 2004 21. Huijgen, W.J.J., R.N.J. Comans., Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process, Chemical Engineering Science. 2006, 61. 4242-4251. 22. Jones, J.R., J. Knoer, Y. Soong, D.K. Harrison, and D. Fauth., Low temperature – low pressure experimental design to form carbonate minerals under saturated CO2 conditions; 17th annual international Pittsburgh coal conference, Pittsburgh, PA, USA. 2000 23. Kakizawa, M., A. Yamasaki, and Y. Yanagisawa., A new CO2 disposal process using artificial rock weathering of calcium silicate accelerated by acetic acid; Energy. 2001, (26): 341-354. 24. Kohlmann, J., Removal of CO2 from flue gases using magnesium silicates in Finland; Helsinki University of Technology, TKK-ENY-3, Espoo, Finland. 2001 25. Kojima, T., A. Nagamine, N. Ueno, and S. Uemiya., Absorption and fixation of carbon dioxide by rock weathering; Energy Conversion and Management. 1997. 38: S461-466. 26. Koljonen, T., H. Siikavirta, and R. Zevenhoven., CO2 capture, storage and utilization in Finland, Technology and Climate Change CLIMTECH 1999-2002, 2002. Tekes, Finland. 27. Koljonen, T., H. Siikavirta, R. Zevenhoven, and I. Savolainen., CO2 capture, storage and reuse potential in Finland; Energy., 2004 29: 1521-1527. 28. Lackner, K.S., Carbonate chemistry for sequestering fossil carbon; Annual Review of Energy and the Environment. 27: 193-232. 29. Lackner, K.S., D.P. Butt, and C.H. Wendt., Magnesite disposal of carbon dioxide; 22th international conference on coal utilization and fuel systems, Clearwater, FL, USA. 1997 30. Lackner, K.S., D.P. Butt, and C.H. Wendt ., Progress on binding CO2 in mineral substrates; Energy Conversion and Management. 1997. 38: S259-264. 31. Lackner, K.S., D.P. Butt, C.H. Wendt, F. Goff, and G. Guthrie., Carbon dioxide disposal in mineral form, Keeping coal competitive.; Los Alamos National Laboratory, LA-UR-97-2094, Los Alamos, NM, USA. 1997 32. Lackner, K.S., D.P. Butt, C.H. Wendt, and D.H. Sharp., Carbon dioxide disposal in solid form; 21st international conference on coal utilization and fuel systems, Clearwater, FL, USA. 1996 33. Lackner, K.S., C.H. Wendt, D.P. Butt, E.L. Joyce, and D.H. Sharp., Carbon dioxide disposal in carbonate minerals; Energy, 1995. 20 (11): 1153-1170. 34. Lackner, K.S. and H.J. Ziock., From low to no emissions; Modern Power Systems, 2000 20(3): 31-32. 35. Maroto-Valer, M.M., J.M. Andresen, Y. Zhang, and M.E. Kuchta., Integrated carbonation: a novel concept te develop a CO2 sequestration module for vision 21 power plants; Pennsylvania State University, Final report DOE DE-FG26-01NT41286, University Park, PA, USA. 2003 36. Maroto-Valer, M.M., D.J. Fauth, M.E. Kuchta, Y. Zhang, J.M. Andresen, and Y. Soong., Study of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration; 18th annual international Pittsburgh coal conference, Newcastle, Australia. 2001 37. Maroto-Valer, M.M., M.E. Kuchta, Y. Zhang, and J.M. Andrésen., Integrated carbonation: a novel concept to develop a CO2 sequestration module for power plants; 6th international conference on greenhouse gas control technologies, Kyoto, Japan. 2002 38. Maroto-Valer, M.M., Y. Zhang, M.E. Kuchta, J.M. Andresen, and D.J. Fauth., Process for sequestering carbon dioxide and sulfur oxide; Patent. 2004 WO2004098740. 39. McKelvy, M.J., A.V.G. Chizmeshya, J. Diefenbacher, H. Bearat, and G. Wolf., Exploration of the role of heat activation in enhancing serpentine carbon sequestration reactions; Environmental Science and Technology, 2004.38 (24): 6897-6903. 40. McKelvy, M.J., R. Sharma, R.W. Carpenter, G. Wolf, A.V.G. Chizmeshya, H. Bearat, and J. Diefenbacher., Developing a mechanistic understanding of serpentine CO2 mineral carbonation reaction processes; 27th international conference on coal utilization and fuel systems, Clearwater, FL, USA. 2002 41. Mesters, C.M.A., J.J.C. Geerlings, and H. Oosterbeek., Process for mineral carbonation with carbon dioxide; Patent, 2002. WO02085788. 42. Nelson, M.G., Carbon dioxide sequestration by mechanochemical carbonation of mineral silicates; University of Utah, Final report DOE FG26-02NT41547, Salt Lake City, UT, USA. 2004 43. O'Connor, W.K., D.C. Dahlin, S.J. Gerdemann, G.E. Rush, and L.R. Penner., Energy and economic considerations for ex-situ aqueous mineral carbonation; 29th international technical conference on coal utilization & fuel systems, Clearwater, FL, USA. 2004 44. O'Connor, W.K., D.C. Dahlin, D.N. Nilsen, S.J. Gerdemann, G.E. Rush, R.P. Walters, andP.C. Turner., Research status on the sequestration of carbon dioxide by direct aqueous mineral carbonation; 18th annual international Pittsburgh coal conference, Newcastle, Australia. 2001 45. O'Connor, W.K., D.C. Dahlin, D.N. Nilsen, G.E. Rush, R.P. Walters, and P.C. Turner., CO2 storage in solid form: a study of direct mineral carbonation; 5th international conference on greenhouse gas technologies, Cairns, Australia. 2000. 46. O'Connor, W.K., D.C. Dahlin, D.N. Nilsen, G.E. Rush, R.P. Walters, and P.C. Turner., Carbon dioxide sequestration by direct mineral carbonation: results from recent studies and current status; 1st national Conference on Carbon sequestration, Alexandria, VA, USA. 2001 47. O'Connor, W.K., D.C. Dahlin, G.E. Rush, C.L. Dahlin, and W.K. Collins., Continuous dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products; SME Annual Meeting & Exhibit, Denver, CO, USA. 2001 48. Park, A.-H.A., R. Jadhav, and L.-S. Fan., CO2 mineral sequestration in a highpressure,high temperature three-phase fluidised bed reactor; 20th annual international Pittsburgh coal conference, Pittsburgh, PA, USA. 2003 49. Park, A.-H.A., R. Jadhav, and L.-S. Fan., CO2 mineral sequestration: chemically enhanced aqueous carbonation of serpentine; Canadian journal of chemical engineering. 2003. 81 (3): 885 -890. 50. Penner, L.R., W.K. O'Connor, D.C. Dahlin, S.J. Gerdemann, and G.E. Rush., Mineral carbonation: Energy costs of pretreatment options and insights gained from flow loop reaction studies; 3rd annual conference on carbon sequestration, Alexandria, VA, USA. 2004 51. Schulze, R.K., M.A. Hill, R.D. Field, P.A. Papin, R.J. Hanrahan, and D.D. Byler., Characterization of carbonated serpentine using XPS and TEM; Energy Conversion and Management, 2004. 45 (20): 3169-3179. 52. Slawomir, W.H., William D. B., and Leo C. F., Varibility of ozone reaction kinetics in batch and continuous flow reactor. Water Research. 1999, 33. 2130-2318. 52. Stolaroff, J.K., G. Lowry, and D. Keith., Using CaO- and MgO-rich industrial waste streams for carbon sequestration; 2nd annual conference on carbon sequestration, Alexandria, VA, USA. 2003. 53. Stolaroff, J.K., G.V. Lowry, and D.W. Keith., Using CaO- and MgO-rich industrial waste streams for carbon sequestration; Energy Conversion and Management. 2004, 46(5): 687-699. 54. Summers, C., D.C. Dahlin, and T. Ochs., The effect of SO2 on mineral carbonation in batch tests; 29th international technical conference on coal utilization & fuel systems, Clearwater, FL, USA. 2004 55. Wendt, C.H., D.P. Butt, K.S. Lackner, R. Vaidya, and H.-J. Ziock., Thermodynamic calculations for acid decomposition of serpentine and olivine in MgCl2 melts III; Los Alamos National Laboratory, LA-UR-98-5633, Los Alamos, NM, USA. 1998 56. Wendt, C.H., D.P. Butt, K.S. Lackner, and H.-J. Ziock., Thermodynamic calculations for acid decomposition of serpentine and olivine in MgCl2 melts I; Los Alamos National Laboratory, LA-UR-98-4528, Los Alamos, NM, USA. 1998 57. Wu, J.C.S., J.-D. Sheen, S.-Y. Chen, and Y.-C. Fan., Feasibility of CO2 fixation via artificial rock weathering; Industrial and engineering chemistry research. 2001, 40 (18):3902-3905. 58. Zevenhoven, R., J. Kohlmann, and A. Mukherjee., Direct dry mineral carbonation for CO2 emissions reduction in Finland; 27th international conference on coal utilization and fuel systems, Clearwater, FL, USA. 2002 59. Zevenhoven, R. and S. Teir., Long-term storage of CO2 as magnesium carbonate in Finland; 3rd annual conference on carbon capture and sequestration, Alexandria, VA, USA. 2004 60. Zhang, Q., K. Sugiyama, and F. Saito., Enhancement of acid extraction of magnesium and silicon from serpentine by mechanochemical treatment;Hydrometallurgy. 1996, 45: 323-331. 61. Zhenhao, D., Rui, S., An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 k and from 0 to 2000 bar, chemical geology. 2003, 193: 257-271. 中文文獻 1. 李易書,”臭氧化小分子有機前質對消毒副產物生成的影響”, 碩士論文, 國立台灣大學, 台北, 台灣(2005) 2. 林俊佑,”矽酸鹽礦石於水溶液中吸收二氧化化碳之研究-矽酸鹽礦石之溶解”, 碩士論文, 國立台灣大學, 台北, 台灣(2001) 3. 卓啟正,”矽酸鹽礦物泥漿吸收二氧化碳之研究-矽酸鹽礦物溶解之研究”, 碩士論文, 國立台灣大學, 台北, 台灣(2000) 4. 陳威仁,”超臨界二氧化碳轉化為碳酸鹽之探討”, 碩士論文, 國立台灣大學, 台北, 台灣(2003) 5. 陳培源, 劉德慶, 黃怡禎, 臺灣之礦物, 經濟部中央地質調查所. (2004) 6. 劉韻萍,”矽酸鹽礦物溶解之研究”, 碩士論文, 國立台灣大學, 台北, 台灣(2001) 7. 蕭國源,”固體吸收劑二氧化碳吸收能力之評估”, 碩士論文, 國立台灣大學, 台北, 台灣(2000) 二氧化碳封存 碳酸化 鈣矽石 中鋼爐石 CO2 sequestration carbonation wollastonite BOF slag. thesis 2006 ftntaiwanuniv 2016-02-20T00:18:43Z CO2封存技術中,有礦物封存、生物封存、海洋封存、油槽及天然氣槽封存,因礦物封存具有1.產物不會造成二次污染2.礦物蘊藏量豐富3.反應過程為放熱反應。本研究目的為了解礦物鑑定分析資料及最佳碳酸化反應途徑並探討中鋼爐石為替代吸收劑之可行性。 本研究將CO2與天然矽酸鹽礦石及中鋼爐石之漿液進行碳酸化作用形成安定之碳酸鹽產物以達到CO2封存。其機制為CO2溶於水中形成HCO3後解離成H+及HCO3-,再與實驗試樣本體溶出Ca2+/Mg2+反應形成CaCO3或MgCO3沉澱,經TGA分析,500oC~850oC之重量損失可計算CO2轉換率。 本實驗針對反應之溫度、壓力、時間、試樣粒徑大小、液固比、攪拌速率、漿液組成成分作一系列之探討研究。由實驗結果顯示,反應溫度150oC、反應壓力1250psig、反應時間6小時、粒徑顆粒大小<44μm、L/S=10g/g、以去離子水為作為試樣漿液,鈣矽石及中鋼爐石之轉換率皆可達99%以上。 此外,粒徑縮減可增加反應之比表面積,有效增加CO2轉換率,相同反應條件下,鈣矽石<44μm之轉換率較88~125μm約增加25%。中鋼爐石<44μm之轉換率較53~62μm約增加2%。攪拌速率及液固比對轉換率無明顯影響,且使用1M NaHCO3為試樣漿液組成並不會增加CO2轉換率,反而造成轉換率下降。 CO2 is sealed up for safekeeping in technology, it is sealed up for safekeeping that there is mineral, the living beings seal up for safekeeping, seal up for safekeeping in the ocean, the oil groove and natural gas trough are sealed up for safekeeping, because the mineral is sealed up for safekeeping have 1. The secondary pollution that the result will not cause is 2. The reserves of mineral are abundant 3. The response course is the exothermic reaction. This research purpose, in order to understand mineral determine that analyses materials and the best carbonic acid reflect the steel stove stone in way and discussion in order to substitute the feasibility of the absorbent. Research this hit CO2 and natural silicate ore steel size, stove of stone carry on carbonic acid function form stable carbonate result with reach CO2 seal. Solve before becoming H+ and HCO3- after its mechanism dissolves and forms HCO3 in water for CO2, it is with experiment sample noumenonn dissolve been and then let's appear Ca2+ /Mg2+ the response form because there aren't CaCO3 or MgCO3, analyse by TGA 500℃ again can calculate CO2 conversion ratio of loss of weight of 850℃. This temperature, the pressure, time, sample grains of foot-path size when there is to reacting experiment, it is the firm for liquid than, mix there aren't speed, size. Shown by the experimental result, response temperature 150℃, response pressure 1250psig, 6 hours such as time such as response, a grain of foot-path particle size <44¦Ì m, L/S=10g/g, regard deionized water as as sample size, wollastonite and hit steel conversion ratio, stove of stone can more than 99% all. In addition grain is it can is it react than the surface area to increase to reduce directly, increase CO2 conversion ratio effectively, under the same response condition, the wollastonite the conversion ratio of 44μm nearly increases by 25% than 88~125μm. the conversion ratio of 44μm nearly increases by 2% than 53~62μm on the steel stove stone in China. It doesn't obviously influence than the conversion ratio to mix the speed and liquid firmly, and use 1M NaHCO3 to make up and will not increase CO2 conversion ratio for the sample size, cause the conversion ratio to drop instead. 第一章 緒論 1-1 研究背景 1-1 1-2 研究目的 1-5 第二章 文獻回顧 2-1 礦物選擇及其熱力學性質 2-1 2-1-1 元素選擇 2-1 2-1-2 礦物選擇 2-1 2-1-3 基本熱力學性質 2-3 2-2 矽酸鹽礦石簡介及其前處理技術 2-6 2-2-1 矽酸鹽礦物介紹 2-6 2-2-2 前處理技術 2-8 2-3 碳酸化反應途徑(Process routes) 2-11 2-3-1 直接碳酸化(Direct carbonation) 2-11 2-3-2 間接碳酸化(Indirect carbonation) 2-17 2-4 廢棄物資源化及產物再利用性 2-23 第三章 實驗設備與方法 3-1 研究流程圖 3-1 3-2 試藥來源及吸收劑製備過程 3-2 3-2-1 試藥來源 3-2 3-2-2 吸收劑試樣製備過程 3-3 3-3 物性及成分分析 3-5 3-3-1 密度測量 3-5 3-3-2 粒徑分佈 3-5 3-3-3 比表面積測量 3-6 3-3-4 孔徑測量 3-6 3-3-5 掃描式電子顯微鏡(SEM)觀察 3-7 3-3-6 X-Ray 繞射分析 3-7 3-3-7 成分分析 3-8 3-4 碳酸化實驗 3-9 3-4-1 液相碳酸化實驗裝置 3-10 3-4-2 碳酸化實驗操作步驟 3-11 3-4-3 轉換率計算 3-13 第四章 結果與討論 4-1 物性與組成成分析實驗設備與方法 4-1 4-1-1 預備實驗—矽酸鹽礦石及中鋼爐石碳酸化反應比較 4-1 4-1-2 粒徑分析 4-6 4-1-3 密度測量 4-6 4-1-4 比表面積測定 4-6 4-1-5 成份分析 4-6 4-2 鈣矽石與CO2之碳酸化反應 4-9 4-2-1 反應時間效應 4-9 4-2-2 反應溫度效應 4-11 4-2-3 反應壓力效應 4-13 4-2-4 粒徑大小效應 4-16 4-2-5 攪拌速率效應 4-17 4-2-6 液固比大小效應 4-18 4-2-7 漿液成份改變效應 4-19 4-2-8 反應前後之SEM圖片 4-21 4-2-9 反應前後之XRD繞射分析 4-25 4-3 中鋼轉爐石石與CO2之碳酸化反應 4-28 4-3-1 反應時間效應 4-28 4-3-2 反應溫度效應 4-32 4-3-3 反應壓力效應 4-34 4-3-4 粒徑大小效應 4-36 4-3-5 攪拌速率效應 4-37 4-3-6 液固比大小效應 4-39 4-3-7 漿液成份改變效應 4-40 4-3-8 反應前後之XRD繞射分析 4-42 第五章 結論與建議 5-1 結論 5-1 5-2 建議 5-2 參考文獻 附錄 圖目錄 Figure 1-1 CO2 sequestration options. 1-3 Figure 2-1 Qualitative illustration of thermodynamic stability of carbonated from of carbon. 2-3 Figure 2-2 Process flow diagram based on. 2-17 Figure 3-1 Research flowchart. 3-1 Figure 3-2 The flowchart of preparing absorbent. 3-4 Figure 3-3 Density measurement apparatus. 3-5 Figure 3-4 Particle size measurement apparatus. 3-6 Figure 3-5 Specific area measurement apparatus. 3-7 Figure 3-6 Pore size measurement apparatus. 3-7 Figure 3-7 SEM measurement apparatus. 3-8 Figure 3-8 XRD measurement apparatus. 3-8 Figure 3-9 The experimental apparatus of the carbonation batch reactor. 3-10 Figure 3-10 Flowchart of experiments to determine the best carbonation reaction conditions. 3-12 Figure 4-1 TGA curve of fresh and carbonated serpentine. 4-2 Figure 4-2 TGA curve of fresh and carbonated wollastonite. 4-3 Figure 4-3 TGA curve of fresh and carbonated BOF slag. 4-5 Figure 4-4 TGA curve of carbonated wollastonite at different reaction time. 4-10 Figure 4-5 Influence of reaction time on the carbonation conversion of wollastonite. 4-10 Figure 4-6 TGA curve of carbonated wollastonite at different reaction temperatures. 4-12 Figure 4-7 Influence of temperature on the carbonation conversion of wollastonite. 4-12 Figure 4-8 Influence of pressure and temperature on the carbonation conversion of wollastonite. 4-15 Figure 4-9 Influence of pressure and temperature on the carbonation conversion of wollastonite. 4-15 Figure 4-10 Influence of particle size on the carbonation conversion of wollastonite. 4-17 Figure 4-11 Influence of stirring power on the carbonation conversion of wollastonite. 4-18 Figure 4-12 Influence of liquid to solid ratio on the carbonation conversion of wollastonite. 4-19 Figure 4-13 Influence of slurry composition on the carbonation conversion of wollastonite. 4-20 Figure 4-14 Scanning electron micrographs. 4-22 Figure 4-15 Scanning electron micrographs. 4-23 Figure 4-16 Scanning electron micrographs. 4-24 Figure 4-17 XRD spectra for both fresh and carbonated wollastonite with peak identifications. 4-26 Figure 4-18 XRD spectra for both fresh and carbonated wollastonite with peak identifications. 4-27 Figure 4-19 TGA curve of carbonated BOF slag at different reaction time. 4-29 Figure 4-20 Influence of reaction time on the carbonation conversion of wollastonite and BOF slag. 4-29 Figure 4-21 The predictive decay model at different reaction time. 4-31 Figure 4-22 TGA curve of carbonated BOF slag at different reaction temperatures. 4-33 Figure 4-23 Influence of temperature on the carbonation conversion of BOF slag and wollastonite. 4-33 Figure 4-24 Influence of pressure and temperature on the carbonation conversion of BOF slag. 4-35 Figure 4-25 Influence of pressure and temperature on the carbonation conversion of BOF slag. 4-35 Figure 4-26 Influence of particle size on the carbonation conversion of BOF slag. 4-37 Figure 4-27 Influence of stirring power on the carbonation conversion of BOF slag. 4-38 Figure 4-28 Influence of liquid to solid ratio on the carbonation conversion of BOF slag. 4-39 Figure 4-29 Influence of slurry composition on the carbonation conversion of BOF slag. 4-40 Figure 4-30 XRD spectra for both fresh and carbonated BOF slag with peak identifications. 4-43 Figure 4-31 XRD spectra for both fresh and carbonated BOF slag with peak identifications. 4-44 Thesis Carbonic acid National Taiwan University Institutional Repository (NTUR)