高濃度石油碳氫化合物污染地下水層添加釋氧物質之生物復育

本研究目的在於找尋適當的釋氧物質,應用生物復育來處理遭高濃度石油碳氫化合物污染的地下水場址。現地場址的總BTEX濃度約為50mg/L。本研究使用的釋氧物質計有四種,ORC The purpose of this research includes using appropriate oxygen releasing compounds for the bioremediation of the groundwater aquifer contaminated by high concentration of petroleum hydrocarbons. Total BTEX concentr...

Full description

Bibliographic Details
Main Authors: 羅致良, Lo, Chih-Liang
Other Authors: 吳先琪, 臺灣大學:環境工程學研究所
Format: Thesis
Language:Chinese
English
Published: 2004
Subjects:
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/62778
http://ntur.lib.ntu.edu.tw/bitstream/246246/62778/1/ntu-93-R91541107-1.pdf
id ftntaiwanuniv:oai:140.112.114.62:246246/62778
record_format openpolar
institution Open Polar
collection National Taiwan University Institutional Repository (NTUR)
op_collection_id ftntaiwanuniv
language Chinese
English
topic 過氧化氫
生物復育
鄰二甲苯
甲苯
釋氧物質
toluene
oxygen releasing compounds
hydrogen peroxide
o-xylene
bioremediation
spellingShingle 過氧化氫
生物復育
鄰二甲苯
甲苯
釋氧物質
toluene
oxygen releasing compounds
hydrogen peroxide
o-xylene
bioremediation
羅致良
Lo, Chih-Liang
高濃度石油碳氫化合物污染地下水層添加釋氧物質之生物復育
topic_facet 過氧化氫
生物復育
鄰二甲苯
甲苯
釋氧物質
toluene
oxygen releasing compounds
hydrogen peroxide
o-xylene
bioremediation
description 本研究目的在於找尋適當的釋氧物質,應用生物復育來處理遭高濃度石油碳氫化合物污染的地下水場址。現地場址的總BTEX濃度約為50mg/L。本研究使用的釋氧物質計有四種,ORC The purpose of this research includes using appropriate oxygen releasing compounds for the bioremediation of the groundwater aquifer contaminated by high concentration of petroleum hydrocarbons. Total BTEX concentration in the field was above 50 mg/L. Four oxygen releasing compounds: ORC 目 錄 中文摘要 英文摘要 目錄……………………………………………………………….……Ⅰ 表目錄…………………………………………………………….…….Ⅲ 圖目錄…………………………………………………………….…….Ⅵ 第一章 前言 1.1 研究緣起………………………………….…………………1-1 1.2 研究目的與內容…………………………….………………1-2 第二章 文獻回顧 2.1 模擬對象現地污染物介紹…….……………………………2-1 2.2 BTEX生物復育介紹…….2-1 2.2.1 影響生物復育之因子………….…………………….2-3 2.2.2 BTEX好氧生物復育技術…………………….….….2-4 2.3 過氧化氫……….……………………………………………2-8 2.3.1 過氧化氫性質….…………………………………….2-8 2.3.2 過氧化氫在土壤的分解…………………….……….2-9 2.3.3 磷酸鹽減緩過氧化氫的機制……………………….2-10 2.4 相關研究…………….…………………………………….2-11 第三章 研究內容與實驗方法 3.1 研究架構…………………………………………………….3-1 3.2實驗儀器與試劑………………………………………………3-2 3.2.1實驗儀器……………………………………………….3-2 3.2.2 過氧化氫水溶液.…………………………….…….…3-3 3.2.3 含石油碳氫化合物進流水……………………………3-3 3.2.4 營養鹽.….………………………………………….…3-3 3.3 土壤耗氧率.…….…………………………….………….…3-4 3.4 批次試驗.…….….……………………….………….…….3-5 3.4.1 水溶液試驗.………….……………….……….….…3-5 3.4.2 含土壤之水溶液試驗.….…………….……….….3-5 3.5 管柱試驗.….…………………………………………………3-6 3.5.1 土壤性質.….…….………….….3-6 3.5.2 管柱實驗裝置……………….….3-10 3.5.3 過氧化氫管柱釋氧試驗…….….3-10 3.5.4 過氧化氫去除石油碳氫化合物之管柱試驗.3-11 3.6 樣品分析項目與方法…….….3-14 3.6.1 過氧化氫濃度分析.….3-14 3.6.2 BTEX濃度分析方法….3-15 第四章 研究結果 4.1 現地土壤耗氧率試驗結果.……………………….……….4-1 4.2 釋氧物質批次實驗結果………………………………….4-2 4.2.1 慢釋氧物質批次試驗結果…………….………….4-2 4.2.2 過氧化氫批次試驗結果………………………….4-5 4.2.2.1 水溶液試驗結果………………………….4-5 4.2.2.2 含土壤之水溶液試驗結果……………….4-7 4.2.3 釋氧物質批次試驗結果比較………….…………….4-10 4.3 過氧化氫管柱試驗結果……………….4-11 4.3.1 過氧化氫管柱釋氧試驗結果….4-11 4.3.2 過氧化氫去除石油碳氫化合物之管柱試驗結果.4-13 4.4 質量平衡……….……………….……….………………….4-29 4.5 生物分解速率……………………………………………….4-31 4.6 評估以過氧化氫進行現地生物復育之可行性…………….4-41 第五章 結論與建議….……………….……….………….……………5-1 參考文獻………………………………………………….…………….Ⅶ 附錄:圖之數據資料…………………………………….………………i 表目錄 表2.1 BTEX物化特性…………………………………….………….2-2 表2.2 過氧化氫的化學特性……………………………….………….2-9 表3.1 營養鹽濃度………………………………….………………….3-3 表3.2 土壤性質(一) ……………………………….………………….3-7 表3.3 土壤性質(二) ……………………………….………………….3-7 表3.4 粒徑分布……………………………….……………………….3-8 表3.5 石英砂基本組成……………………….……………………….3-8 表3.6 管柱試驗參數…………………….………………………….3-12 表4.1 釋氧物質釋氧量比較表……………………………….……….4-3 表4.2 釋氧物質之釋氧速率常數…………………………………….4-10 表4.3以流量為0.08ml/min,與進流水流量比為1:8注入100mg/L過氧化氫不同時間及不同位置溶氧值………………….……4-14 表4.4以0.1ml/min,與進流水流量比為1:5注入220mg/L過氧化氫水溶液後,不同時間不同採樣點的過氧化氫濃度值.…….4-18 表4.5以0.1ml/min,與進流水流量比為1:5注入850mg/L過氧化氫水溶液後,不 同時間不同採樣點的過氧化氫濃度值…….4-22 表4.6 土壤耗氧率比較表……………………………………………4-28 表4.7 土壤中有機物比較表…………………………………………4-28 表4.8 注入220mg/L過氧化氫時,氧氣消耗通量…………….….4-30 表4.9 注入850mg/L過氧化氫時,氧氣消耗通量……………….4-30 表4.10 注入1700mg/L過氧化氫時,氧氣消耗通量……………….4-31 表4.11 注入不同濃度過氧化氫甲苯的生物分解係數……….….4-33 表4.12 注入不同濃度過氧化氫鄰二甲苯的生物分解係數….….4-33 圖目錄 圖2.1 生物氣提法之示意圖………………….……………………….2-6 圖2.2 生物通氣法之示意圖………………….……………………….2-6 圖2.3生物氣提法結合生物通氣法之示意圖….…………….…….2-7 圖3.1 論文研究架構………………………………………………….3-1 圖3.2 採樣位置圖…………………………………………….……….3-6 圖3.3 管柱示意圖…………………………………….……….…….3-11 圖4.1 土壤耗氧速率圖……………………………………………….4-1 圖4.2 三種慢釋氧物質在批次釋氧試驗水中溶氧值變化圖,(a)ORC
author2 吳先琪
臺灣大學:環境工程學研究所
format Thesis
author 羅致良
Lo, Chih-Liang
author_facet 羅致良
Lo, Chih-Liang
author_sort 羅致良
title 高濃度石油碳氫化合物污染地下水層添加釋氧物質之生物復育
title_short 高濃度石油碳氫化合物污染地下水層添加釋氧物質之生物復育
title_full 高濃度石油碳氫化合物污染地下水層添加釋氧物質之生物復育
title_fullStr 高濃度石油碳氫化合物污染地下水層添加釋氧物質之生物復育
title_full_unstemmed 高濃度石油碳氫化合物污染地下水層添加釋氧物質之生物復育
title_sort 高濃度石油碳氫化合物污染地下水層添加釋氧物質之生物復育
publishDate 2004
url http://ntur.lib.ntu.edu.tw/handle/246246/62778
http://ntur.lib.ntu.edu.tw/bitstream/246246/62778/1/ntu-93-R91541107-1.pdf
genre Arctic
genre_facet Arctic
op_relation 吳鴻明 “似Fenton法現地氧化TCE DNAPL之探討”,國立屏東科技大學環境工程與科學研究所,(2000) 陳炳宏,焦士榮 “過氧化氫水溶液注入飽和含水層之傳輸效能研究”,第一屆土壤與地下水技術研討會論文集, (2003)。 卓坤慶 “應用慢釋氧物質處理受石油碳氫化合物污染之地下水–現地模場試驗”,國立台灣大學環境工程學研究所碩士論文, (2003)。 Chapelle, F. H., “Bioremediation of petroleum hydrocarbon -contaminated ground water: the perspectives of history and hydrology”, Ground Water, Vol.37, No.1, pp. 122~131, (1999) Evans, D. F. and Upton, M. J., “Studies on singlet oxygen in aqueous solution, Part 4: The spontaneous and catalyzed decomposition of hydrogen peroxide”, J. Chem. Soc. Dalton Trans., pp. 2525~2529, (1985) Felton, D. W., Leahy, M. C., Bealer, L. J., and Kline, B. A., “Case study: site remediation using air sparging and soil vapor extraction”, Proc. of the Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection, and Restoration, Houston, pp. 395~411, (1992) Fiorenza, S. and Ward, C. H., “Microbial adaptation to hydrogen peroxide and biodegradation of aromatic hydrocarbons”, Journal of industrial Microbiology & Biotechnology, Vol.18, pp. 140~151, (1997) Hemond, .H F. and Fechner, E. J., Chemical fate and transport in the environment, Academic Press, San Diego, U.S.A., (1994) Hinchee, R. E., Downey, D. C. and Aggarwal, P. K., “Use of hydrogen peroxide as oxygen source for in situ biodegradation Part Ⅰ. Field studies”, Journal of Hazardous Materials, Vol.27, N0.3, pp. 287~299, (1991) Kampbell, D. H., Wiedemeier, T. H., and Hansen, J. E., “Intrinsic bioremediation of fuel contamination in ground water at a field site”, Journal of Hazardous Materials, Vol.49, pp. 197~204, (1996) Miller, C. M. and Valentine, R. L., “Hydrogen peroxide decomposition and quinoline degradation in the presence of aquifer material”, Water Research, Vol.29, No.10, pp. 2353~2359, (1995) Nakhla, G. and Niaz, M., “Pilot-scale in situ bioremediation of gasoline-contaminated groundwater: impact of process parameters”, Environmental Process, Vol.21, No.1, pp. 37~46, (2002) Pardieck, D. L., Bouwer E. J. and Stone A. T., “Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: a review.” Journal of Contaminant Hydrology, Vol.9, pp. 221~242, (1992) Petigara, B. R., Blough, N. V., and Mignerey, A. C., “Mechanisms of hydrogen peroxide decomposition in soils.” Environ. Sci. Technol., Vol36, pp. 639~645, (2002) Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M., Environmental Organic Chemistry, Wiley-Interscience Publication, New York, U. S. A., (1993) Vesper, S. J., Murdoch, L. C., Hayes, S., and Davis-Hoover, W. J., “Solid oxygen source for bioremediation in subsurface soils”, Journal of Hazardous Materials, Vol.36, pp. 265~274, (1994) Watts, R. J., Foget, M. K., Kong, S. H., and Teel, A. L., “Hydrogen peroxide decomposition in model subsurface system”, Journal of Hazardous Materials, Vol.49, pp. 229~243, (1999) White, D., Schmidtke, T., and Woolard, C., “Laboratory model of a petroleum migration barrier in Arctic Alaska”, Journal of Hazardous Materials, Vol.67, pp. 313~323, (1999) Xie, G. and Barcelona, M. J., “Sequential chemical oxidation and aerobic biodegradation of equivalent carbon number-based hydrocarbon fraction in jet fuel”, Environ. Sci. Technol., Vol.37, pp. 4751~4760, (2003) Zappi, M., White, K.,Hwang, H. M., Bajpai, R., and Qasim, M., “The fate of hydrogen peroxide as an oxygen source for bioremediation activities within saturated Aquifer systems”, Journal of the Air & Waste Management Association, Vol.50, No.30, pp. 1818~1830, (2000) US Peroxide公司網址:http://www.h2o2.com/index.html 美國EPA網址:http://www.epa.gov/swerust1/cat/insitbio.htm http://www.epa.gov/ORD/WebPubs/biorem/ibiov.pdf 土壤水分含量測定法—重量法: http://www.niea.gov.tw/SOIL/S28061C.htm
_version_ 1766302550862069760
spelling ftntaiwanuniv:oai:140.112.114.62:246246/62778 2023-05-15T14:28:23+02:00 高濃度石油碳氫化合物污染地下水層添加釋氧物質之生物復育 Bioremediaton of a groundwater aquifer contaminated by high concentration of petroleum hydrocarbon with oxygen releasing compounds 羅致良 Lo, Chih-Liang 吳先琪 臺灣大學:環境工程學研究所 2004 510193 bytes application/pdf http://ntur.lib.ntu.edu.tw/handle/246246/62778 http://ntur.lib.ntu.edu.tw/bitstream/246246/62778/1/ntu-93-R91541107-1.pdf zh-TW en_US chi eng 吳鴻明 “似Fenton法現地氧化TCE DNAPL之探討”,國立屏東科技大學環境工程與科學研究所,(2000) 陳炳宏,焦士榮 “過氧化氫水溶液注入飽和含水層之傳輸效能研究”,第一屆土壤與地下水技術研討會論文集, (2003)。 卓坤慶 “應用慢釋氧物質處理受石油碳氫化合物污染之地下水–現地模場試驗”,國立台灣大學環境工程學研究所碩士論文, (2003)。 Chapelle, F. H., “Bioremediation of petroleum hydrocarbon -contaminated ground water: the perspectives of history and hydrology”, Ground Water, Vol.37, No.1, pp. 122~131, (1999) Evans, D. F. and Upton, M. J., “Studies on singlet oxygen in aqueous solution, Part 4: The spontaneous and catalyzed decomposition of hydrogen peroxide”, J. Chem. Soc. Dalton Trans., pp. 2525~2529, (1985) Felton, D. W., Leahy, M. C., Bealer, L. J., and Kline, B. A., “Case study: site remediation using air sparging and soil vapor extraction”, Proc. of the Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection, and Restoration, Houston, pp. 395~411, (1992) Fiorenza, S. and Ward, C. H., “Microbial adaptation to hydrogen peroxide and biodegradation of aromatic hydrocarbons”, Journal of industrial Microbiology & Biotechnology, Vol.18, pp. 140~151, (1997) Hemond, .H F. and Fechner, E. J., Chemical fate and transport in the environment, Academic Press, San Diego, U.S.A., (1994) Hinchee, R. E., Downey, D. C. and Aggarwal, P. K., “Use of hydrogen peroxide as oxygen source for in situ biodegradation Part Ⅰ. Field studies”, Journal of Hazardous Materials, Vol.27, N0.3, pp. 287~299, (1991) Kampbell, D. H., Wiedemeier, T. H., and Hansen, J. E., “Intrinsic bioremediation of fuel contamination in ground water at a field site”, Journal of Hazardous Materials, Vol.49, pp. 197~204, (1996) Miller, C. M. and Valentine, R. L., “Hydrogen peroxide decomposition and quinoline degradation in the presence of aquifer material”, Water Research, Vol.29, No.10, pp. 2353~2359, (1995) Nakhla, G. and Niaz, M., “Pilot-scale in situ bioremediation of gasoline-contaminated groundwater: impact of process parameters”, Environmental Process, Vol.21, No.1, pp. 37~46, (2002) Pardieck, D. L., Bouwer E. J. and Stone A. T., “Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: a review.” Journal of Contaminant Hydrology, Vol.9, pp. 221~242, (1992) Petigara, B. R., Blough, N. V., and Mignerey, A. C., “Mechanisms of hydrogen peroxide decomposition in soils.” Environ. Sci. Technol., Vol36, pp. 639~645, (2002) Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M., Environmental Organic Chemistry, Wiley-Interscience Publication, New York, U. S. A., (1993) Vesper, S. J., Murdoch, L. C., Hayes, S., and Davis-Hoover, W. J., “Solid oxygen source for bioremediation in subsurface soils”, Journal of Hazardous Materials, Vol.36, pp. 265~274, (1994) Watts, R. J., Foget, M. K., Kong, S. H., and Teel, A. L., “Hydrogen peroxide decomposition in model subsurface system”, Journal of Hazardous Materials, Vol.49, pp. 229~243, (1999) White, D., Schmidtke, T., and Woolard, C., “Laboratory model of a petroleum migration barrier in Arctic Alaska”, Journal of Hazardous Materials, Vol.67, pp. 313~323, (1999) Xie, G. and Barcelona, M. J., “Sequential chemical oxidation and aerobic biodegradation of equivalent carbon number-based hydrocarbon fraction in jet fuel”, Environ. Sci. Technol., Vol.37, pp. 4751~4760, (2003) Zappi, M., White, K.,Hwang, H. M., Bajpai, R., and Qasim, M., “The fate of hydrogen peroxide as an oxygen source for bioremediation activities within saturated Aquifer systems”, Journal of the Air & Waste Management Association, Vol.50, No.30, pp. 1818~1830, (2000) US Peroxide公司網址:http://www.h2o2.com/index.html 美國EPA網址:http://www.epa.gov/swerust1/cat/insitbio.htm http://www.epa.gov/ORD/WebPubs/biorem/ibiov.pdf 土壤水分含量測定法—重量法: http://www.niea.gov.tw/SOIL/S28061C.htm 過氧化氫 生物復育 鄰二甲苯 甲苯 釋氧物質 toluene oxygen releasing compounds hydrogen peroxide o-xylene bioremediation thesis 2004 ftntaiwanuniv 2016-02-20T00:18:43Z 本研究目的在於找尋適當的釋氧物質,應用生物復育來處理遭高濃度石油碳氫化合物污染的地下水場址。現地場址的總BTEX濃度約為50mg/L。本研究使用的釋氧物質計有四種,ORC The purpose of this research includes using appropriate oxygen releasing compounds for the bioremediation of the groundwater aquifer contaminated by high concentration of petroleum hydrocarbons. Total BTEX concentration in the field was above 50 mg/L. Four oxygen releasing compounds: ORC 目 錄 中文摘要 英文摘要 目錄……………………………………………………………….……Ⅰ 表目錄…………………………………………………………….…….Ⅲ 圖目錄…………………………………………………………….…….Ⅵ 第一章 前言 1.1 研究緣起………………………………….…………………1-1 1.2 研究目的與內容…………………………….………………1-2 第二章 文獻回顧 2.1 模擬對象現地污染物介紹…….……………………………2-1 2.2 BTEX生物復育介紹…….2-1 2.2.1 影響生物復育之因子………….…………………….2-3 2.2.2 BTEX好氧生物復育技術…………………….….….2-4 2.3 過氧化氫……….……………………………………………2-8 2.3.1 過氧化氫性質….…………………………………….2-8 2.3.2 過氧化氫在土壤的分解…………………….……….2-9 2.3.3 磷酸鹽減緩過氧化氫的機制……………………….2-10 2.4 相關研究…………….…………………………………….2-11 第三章 研究內容與實驗方法 3.1 研究架構…………………………………………………….3-1 3.2實驗儀器與試劑………………………………………………3-2 3.2.1實驗儀器……………………………………………….3-2 3.2.2 過氧化氫水溶液.…………………………….…….…3-3 3.2.3 含石油碳氫化合物進流水……………………………3-3 3.2.4 營養鹽.….………………………………………….…3-3 3.3 土壤耗氧率.…….…………………………….………….…3-4 3.4 批次試驗.…….….……………………….………….…….3-5 3.4.1 水溶液試驗.………….……………….……….….…3-5 3.4.2 含土壤之水溶液試驗.….…………….……….….3-5 3.5 管柱試驗.….…………………………………………………3-6 3.5.1 土壤性質.….…….………….….3-6 3.5.2 管柱實驗裝置……………….….3-10 3.5.3 過氧化氫管柱釋氧試驗…….….3-10 3.5.4 過氧化氫去除石油碳氫化合物之管柱試驗.3-11 3.6 樣品分析項目與方法…….….3-14 3.6.1 過氧化氫濃度分析.….3-14 3.6.2 BTEX濃度分析方法….3-15 第四章 研究結果 4.1 現地土壤耗氧率試驗結果.……………………….……….4-1 4.2 釋氧物質批次實驗結果………………………………….4-2 4.2.1 慢釋氧物質批次試驗結果…………….………….4-2 4.2.2 過氧化氫批次試驗結果………………………….4-5 4.2.2.1 水溶液試驗結果………………………….4-5 4.2.2.2 含土壤之水溶液試驗結果……………….4-7 4.2.3 釋氧物質批次試驗結果比較………….…………….4-10 4.3 過氧化氫管柱試驗結果……………….4-11 4.3.1 過氧化氫管柱釋氧試驗結果….4-11 4.3.2 過氧化氫去除石油碳氫化合物之管柱試驗結果.4-13 4.4 質量平衡……….……………….……….………………….4-29 4.5 生物分解速率……………………………………………….4-31 4.6 評估以過氧化氫進行現地生物復育之可行性…………….4-41 第五章 結論與建議….……………….……….………….……………5-1 參考文獻………………………………………………….…………….Ⅶ 附錄:圖之數據資料…………………………………….………………i 表目錄 表2.1 BTEX物化特性…………………………………….………….2-2 表2.2 過氧化氫的化學特性……………………………….………….2-9 表3.1 營養鹽濃度………………………………….………………….3-3 表3.2 土壤性質(一) ……………………………….………………….3-7 表3.3 土壤性質(二) ……………………………….………………….3-7 表3.4 粒徑分布……………………………….……………………….3-8 表3.5 石英砂基本組成……………………….……………………….3-8 表3.6 管柱試驗參數…………………….………………………….3-12 表4.1 釋氧物質釋氧量比較表……………………………….……….4-3 表4.2 釋氧物質之釋氧速率常數…………………………………….4-10 表4.3以流量為0.08ml/min,與進流水流量比為1:8注入100mg/L過氧化氫不同時間及不同位置溶氧值………………….……4-14 表4.4以0.1ml/min,與進流水流量比為1:5注入220mg/L過氧化氫水溶液後,不同時間不同採樣點的過氧化氫濃度值.…….4-18 表4.5以0.1ml/min,與進流水流量比為1:5注入850mg/L過氧化氫水溶液後,不 同時間不同採樣點的過氧化氫濃度值…….4-22 表4.6 土壤耗氧率比較表……………………………………………4-28 表4.7 土壤中有機物比較表…………………………………………4-28 表4.8 注入220mg/L過氧化氫時,氧氣消耗通量…………….….4-30 表4.9 注入850mg/L過氧化氫時,氧氣消耗通量……………….4-30 表4.10 注入1700mg/L過氧化氫時,氧氣消耗通量……………….4-31 表4.11 注入不同濃度過氧化氫甲苯的生物分解係數……….….4-33 表4.12 注入不同濃度過氧化氫鄰二甲苯的生物分解係數….….4-33 圖目錄 圖2.1 生物氣提法之示意圖………………….……………………….2-6 圖2.2 生物通氣法之示意圖………………….……………………….2-6 圖2.3生物氣提法結合生物通氣法之示意圖….…………….…….2-7 圖3.1 論文研究架構………………………………………………….3-1 圖3.2 採樣位置圖…………………………………………….……….3-6 圖3.3 管柱示意圖…………………………………….……….…….3-11 圖4.1 土壤耗氧速率圖……………………………………………….4-1 圖4.2 三種慢釋氧物質在批次釋氧試驗水中溶氧值變化圖,(a)ORC Thesis Arctic National Taiwan University Institutional Repository (NTUR)