台北捷運站、火車站及公車站超細粒徑懸浮微粒 濃度特性之研究

目的:本研究針對台北都會區公車站、火車站及捷運站等大眾運輸車站環境中NC0.01-0.1( ultrafine particles,微粒粒徑<100nm )懸浮微粒之濃度與粒徑分佈情況及大眾運輸使用者暴露量進行比較研究。 方法:本研究環境採樣期間為2005年1月17日至2005年3月18日,使用SMPS+C以及DUSTTMcheck為採樣儀器,採集環境中之微粒粒數濃度與質量濃度值。總計於四處公車站(忠孝西路一段、板橋花市、忠孝東路五段、捷運劍潭站),三處火車站(台北火車站、板橋火車站、松山火車站)以及四處捷運站(台北車站、新埔站、永春站、劍潭站)進行11次現場採樣,每個採樣點均進行一次為...

Full description

Bibliographic Details
Main Authors: 曾元廷, Tseng, yuan-ting
Other Authors: 詹長權, 臺灣大學:職業醫學與工業衛生研究所
Format: Thesis
Language:Chinese
English
Published: 2005
Subjects:
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/59840
http://ntur.lib.ntu.edu.tw/bitstream/246246/59840/1/ntu-94-R92841016-1.pdf
id ftntaiwanuniv:oai:140.112.114.62:246246/59840
record_format openpolar
institution Open Polar
collection National Taiwan University Institutional Repository (NTUR)
op_collection_id ftntaiwanuniv
language Chinese
English
topic 超細粒徑懸浮微粒
大眾運輸車站
粒數濃度
通勤者
暴露評估
ultrafine particles
public transportation station
number concentration
commuter
exposure assessment
spellingShingle 超細粒徑懸浮微粒
大眾運輸車站
粒數濃度
通勤者
暴露評估
ultrafine particles
public transportation station
number concentration
commuter
exposure assessment
曾元廷
Tseng, yuan-ting
台北捷運站、火車站及公車站超細粒徑懸浮微粒 濃度特性之研究
topic_facet 超細粒徑懸浮微粒
大眾運輸車站
粒數濃度
通勤者
暴露評估
ultrafine particles
public transportation station
number concentration
commuter
exposure assessment
description 目的:本研究針對台北都會區公車站、火車站及捷運站等大眾運輸車站環境中NC0.01-0.1( ultrafine particles,微粒粒徑<100nm )懸浮微粒之濃度與粒徑分佈情況及大眾運輸使用者暴露量進行比較研究。 方法:本研究環境採樣期間為2005年1月17日至2005年3月18日,使用SMPS+C以及DUSTTMcheck為採樣儀器,採集環境中之微粒粒數濃度與質量濃度值。總計於四處公車站(忠孝西路一段、板橋花市、忠孝東路五段、捷運劍潭站),三處火車站(台北火車站、板橋火車站、松山火車站)以及四處捷運站(台北車站、新埔站、永春站、劍潭站)進行11次現場採樣,每個採樣點均進行一次為期17.5小時的採樣。分析過程中我們分為NC0.01-0.1(微粒粒徑 < 100nm之粒數濃度)以及NC0.01-0.05(微粒粒徑 < 50nm之粒數濃度)兩個粒徑範圍進行討論,以了解大眾運輸環境中懸浮微粒粒數濃度以及粒徑分佈情形。此外,我們結合各車站測得之NC0.01-0.1濃度、候車時間及呼吸量來估計大眾運輸工具使用者之暴露量。 結果:研究結果發現NC0.01-0.1微粒粒數濃度值高低依序為公車站(12.8 × 104 cm-3)、室內火車站(6.38 × 104cm-3)以及室內捷運站(3.63 × 104cm-3);而火車站與捷運站位於不同室內外環境之比較,則是室外車站之粒數濃度低於室內車站。上班、下班交通尖峰時段與非尖峰時段,微粒粒數濃度變化差異在公車站以及捷運站有達到統計上的顯著(P-value<0.05),但在火車站並沒有類似的趨勢。在NC0.01-0.05粒徑範圍也有相同的發現。此外,在微粒粒徑分佈結果可發現公車站環境中微粒粒數濃度,主要分佈在粒徑小於50 nm以下之範圍,其佔微粒總粒數濃度約78.5%。火車站及捷運站的比例則分別為46.6%與47.1%。成年人於公車站、火車站及捷運站之年平均NC0.01-0.1暴露量為1.77 × 1013顆、5.76 × 1012顆及2.84 × 1012顆。 結論:大眾運輸公車站、火車站及捷運站環境中NC0.01-0.1之粒數濃度值,會因為與汽機車排放源遠近而有所差異,公車站濃度顯著高於火車站及捷運站。此項濃度差異導致搭乘公車之成人使用者年平均NC0.01-0.1暴露量較火車站高1.19 × 1013顆,較捷運站高1.48 × 1013顆。 關鍵字:超細粒徑懸浮微粒、大眾運輸車站、粒數濃度、通勤者、暴露評估 Objective: This study is designed to characterize NC0.01-0.1(number concentrations of ultrafine particles with size between 10nm ~ 100 nm) at public transportation stations, including mass rapid transit (MRT), train, and bus stations, in Taipei. Method: The number concentrations and size distribution of PM with size range 9.8-874.5 nm(Total number concentrations) were measured by a scanning mobility particle sizer(SMPS) at four bus stations, three train stations, and four mass rapid(MRT) stations in Taipei from January 17th to March 18th, 2005. The sampled period at each station is 17.5 hours. We focused our study on two particle sizes, i.e. NC0.01-0.1 and NC0.01-0.05(number concentrations of ultrafine particles with size between 10nm ~ 50 nm). NC0.01-0.1 exposures of public transportation users were estimated by combining NC0.01-0.1 concentrations at stations and commuters’ waiting time, and ventilation rate together. Result: Hourly average number concentrations of NC0.01-0.1 at bus, train and MRT stations were 12.8 × 104 cm-3, 6.38 × 104cm-3 and 3.63 × 104cm-3, respectively. For train and MRT stations, the number concentrations of NC0.01-0.1 at indoors were higher than those outdoors. Moreover, the number concentrations at MRT and bus stations in rush hours were higher than those in non-rush hours.We found the same results for NC0.01-0.05. The percentage of number concentrations of accounted for NC0.01-0.05 about 78.5% at bus stations, 46.6% at train stations, and 47.1% at MRT stations. Adult commuters’ annual NC0.01-0.1 exposures were 1.77 × 1013counts at bus stations, 5.76 × 1012counts at train stations, and 2.84 × 1012counts at MRT stations. Conclusion: The NC0.01-0.1 concentrations in public transportation stations varied by the distance between the stations and on-road vehicle emission sources in Taipei. The NC0.01-0.1 concentrations in bus stations were significantly higher than those in train and MRT stations. Accordingly, bus users annual NC0.01-0.1 exposures were 1.19 × 1013counts higher than train users, and 1.48 × 1013counts higher than MRT users. 第一章 前 言 1 1.1 研究緣起 1 1.2 研究目的 3 第二章 文獻探討 4 2.1微粒毒性研究對健康效應 4 2.1.1流行病學研究 4 2.1.2 動物毒性研究 6 2.1.3 細胞毒性實驗 7 2.2 環境中超細微粒分佈研究 9 第三章 材料與方法 15 3.1 研究流程 15 3.2 研究設計 16 3.2.1 採樣地點 17 3.2.2 採樣時間 20 3.2.3 採樣儀器 22 3.2.4統計分析 25 第四章 研究結果 30 4.1大眾運輸車站環境中 NC0.01-0.05與NC0.01-0.1粒數濃度分佈 31 4.1.1公車站NC0.01-0.05與NC0.01-0.1微粒濃度分佈 31 4.1.2火車站NC0.01-0.05與NC0.01-0.1微粒濃度分佈 32 4.1.3捷運站NC0.01-0.05與NC0.01-0.1微粒濃度分佈 33 4.1.4公車站、火車站及捷運站間NC0.01-0.05與NC0.01-0.1微粒濃度比較 35 4.2大眾運輸車站環境中TN粒數濃度分佈以及PM1/PM2.5/PM10質量濃度 36 4.2.1公車站環境中TN微粒濃度分佈以及PM1/PM2.5/PM10質量濃度 36 4.2.2火車站環境中TN微粒濃度分佈以及PM1/PM2.5/PM10質量濃度 36 4.2.3捷運站環境中TN微粒濃度分佈以及PM1/PM2.5/PM10質量濃度 36 4.2.4公車站、火車站及捷運站間TN微粒濃度以及PM1/PM2.5/PM10質量濃 度比較 37 第五章 討論 52 5.1不同車站環境粒數濃度差異 52 5.2交通尖峰時段、非尖峰時段與車站環境粒數濃度之相關 57 5.3特殊事件對車站環境中微粒質量濃度之影響 59 5.4暴露餘超細粒徑懸浮微粒之健康影響效應 61 5.4.1不同車站暴露濃度之差異 61 5.4.2急性健康效應比較 62 5.4.3長期健康效應比較 62 5.5研究限制 64 5.6結論與建議 65 參考文獻 87 附錄A 公車站、火車站以及捷運站微粒質量濃度與交通尖峰非尖峰時期之平均值、標準差及ANOVA統計值 93 附錄B 各採樣點之位置圖 96 附錄 C 公車站環境中,NC0.01-0.1各粒徑範圍粒數濃度與CO、NO、NO2、NOx、SO2濃度以及風速之相關性 107 表目錄 表2 - 1相關研究之粒數濃度值分佈 14 表4 – 1(a)公車站、火車站及捷運站之TN粒數濃度與PM1.0、PM2.5、PM10質量濃度平均值、標準差、最大值、中位數及最小值(採樣時間6:00∼23:30) 38 表4 – 1(b)公車站、火車站及捷運站之TN粒數濃度與PM1.0、PM2.5、PM10質量濃度平均值、標準差、最大值、中位數及最小值(採樣時間6:00∼23:30) 39 表4 – 2公車站、火車站及捷運站環境中之NC0.01-0.05粒徑微粒粒數濃度平均值、標準差、最大值、中位數及最小值(採樣時間6:00∼23:30) 40 表4 – 3 公車站、火車站及捷運站環境中之NC0.01-0.1粒徑微粒粒數濃度平均值、標準差、最大值、中位數及最小值(採樣時間6:00∼23:30) 41 表4 - 4公車站、火車站及捷運站環境中之NC0.01-0.05粒徑微粒粒數濃度於交通尖峰時期(7:00 ~ 9:00;17:00 ~ 19:00)與非尖鋒時期(11:00 ~ 13:00)之平均值、標準差及ANOVA統計值 42 表4 – 5公車站、火車站及捷運站環境中之NC0.01-0.1粒徑微粒粒數濃度於交通尖峰時期(7:00 ~ 9:00;17:00 ~ 19:00)與非尖鋒時期(11:00 ~ 13:00)之平均值、標準差及ANOVA統計值 43 表4 - 6公車站、火車站及捷運站環境中之TN粒徑微粒粒數濃度於交通尖峰時期(7:00 ~ 9:00;17:00 ~ 19:00)與非尖鋒時期(11:00 ~ 13:00)之平均值、標準差及ANOVA統計值 44 表4 – 7(a) NC0.009-0.05、NC0.009-0.1、TN粒數濃度濃度於公車站、火車站和捷運站平均值、標準差及ANOVA之統計值(採樣時間:6:00∼23:30) 45 表4 - 7(b) PM1.0、PM2.5、PM10質量濃度於公車站、火站和捷運站平均值、標準差及ANOVA之統計值(採樣時間:6:00∼23:30) 46 表5 - 1 國外相關研究中超細懸浮微粒(NC0.01-0.1)粒數濃度值 56 表5 - 2 忠孝西路一段公車站尖峰時間(7:00 ~ 9:00;17:00 ~ 19:00)與非尖峰時間之車輛數與粒數濃度 85 圖目錄 圖3 - 1大眾運輸車站採樣地點一覽 17 圖3 - 2忠孝西路一段公車站、台北火車站、捷運台北車站採樣位置 26 圖3 - 3板橋花市公車站、捷運新埔站採樣位置 26 圖3 - 4忠孝東路五段公車站、捷運永春站採樣位置 27 圖3– 5捷運劍潭站公車站、捷運劍潭站採樣位置 27 圖3 - 6 板橋火車站採樣位置 28 圖3 - 8 DMA (靜電分徑儀) 22 圖3 - 9 CPC (凝結核微粒計數器) 22 圖3 - 7松山火車站採樣位置 28 圖3 - 10微粒電移動度掃瞄分徑器(SMPS+C) 29 圖3 - 11粒數質量濃度監測儀 29 圖4 – 1 TN微粒於公車站(忠孝西路一段公車站)、火車站(台北火車站)及捷運站(台北車站)之粒徑分佈圖 47 圖4 – 2 NC0.01-0.1微粒於公車站(忠孝西路一段公車站)、火車站(台北火車站)及捷運站(台北車站)之粒徑分佈圖 48 圖4 - 3NC0.01-0.1微粒於公車站(板橋花市公車站)、火車站(板橋火車站)及捷運站(新埔站)之粒徑分佈圖 49 圖4 - 4 NC0.01-0.1微粒於公車站(忠孝東路五段公車站)、火車站(松山火車站)及捷運站(永春站)之粒徑分佈圖 50 圖4 – 5 NC0.01-0.1微粒於公車站(劍潭捷運站公車站)及捷運站(劍潭站)之粒徑分佈圖 51 圖5 – 1(a)忠孝西路一段公車站NC0.01-0.05粒數濃度(N=17)與中山空氣品質監測站CO濃度變化趨勢圖(N=17) 67 圖5 – 1(b)忠孝西路一段公車站NC0.01-0.05粒數濃度(N=17)與中山空氣品質監測站NO濃度變化趨勢圖(N=17) 67 圖5 – 1(c)忠孝西路一段公車站NC0.01-0.05粒數濃度(N=17)與中山空氣品質監測站NO2濃度變化趨勢圖(N=17) 68 圖5 – 1(d)忠孝西路一段公車站NC0.01-0.05粒數濃度(N=17)與中山空氣品質監測站NOX濃度變化趨勢圖(N=17) 68 圖5 – 1(e)忠孝西路一段公車站NC0.01-0.05粒數濃度(N=17)與中山空氣品質監測站PM10濃度變化趨勢圖(N=17) 69 圖5 – 2(a)板橋花市公車站NC0.01-0.05粒數濃度(N=18)與板橋空氣品質監測站CO濃度(N=15)變化趨勢圖 69 圖5 – 2(b)板橋花市公車站NC0.01-0.05粒數濃度(N=18)與板橋空氣品質監測站NO濃度變(N=15)化趨勢圖 70 圖5 – 2 (c)板橋花市公車站NC0.01-0.05粒數濃度(N=18)與板橋空氣品質監測站NO2濃度(N=15)變化趨勢圖 70 圖5 – 2(d)板橋花市公車站NC0.01-0.05粒數濃度(N=18)與板橋空氣品質監測站NOX濃度(N=15)變化趨勢圖 71 圖5 – 2(e)板橋花市公車站NC0.01-0.05粒數濃度(N=18)與板橋空氣品質監測站PM10濃度(N=15)變化趨勢圖 71 圖5 – 2(a)忠孝東路五段公車站NC0.01-0.05粒數濃度(N=18)與松山空氣品質監測站CO濃度(N=18)變化趨勢圖 72 圖5 – 2(b)忠孝東路五段公車站NC0.01-0.05粒數濃度(N=18)與松山空氣品質監測站NO濃度(N=18)變化趨勢圖 72 圖5 – 3(c)忠孝東路五段公車站NC0.01-0.05粒數濃度(N=18)與松山空氣品質監測站NO2濃度(N=18)變化趨勢圖 73 圖5 – 3(d)忠孝東路五段公車站NC0.01-0.05粒數濃度(N=18)與松山空氣品質監測站NOX濃度(N=18)變化趨勢圖 73 圖5 – 3(d)忠孝東路五段公車站NC0.01-0.05粒數濃度(N=18)與松山空氣品質監測站PM10濃度(N=18)變化趨勢圖 74 圖5 - 4(a)忠孝西路一段公車站NC0.01-0.05與中山空氣品質監測站CO濃度之相關圖(N=16) 75 圖5 - 4(b)忠孝西路一段公車站NC0.01-0.05與中山空氣品質監測站NO濃度之相關圖(N=16) 75 圖5 - 4(c)忠孝西路一段公車站NC0.01-0.05與中山空氣品質監測站NO2濃度之相關圖(N=16) 76 圖5 - 4(d)忠孝西路一段公車站NC0.01-0.05與中山空氣品質監測站NOx濃度之相關圖(N=16) 76 圖5 - 4(e)忠孝西路一段公車站NC0.01-0.05與中山空氣品質監測站PM10濃度之相關圖(N=14) 77 圖5 - 5(a)板橋花市公車站NC0.01-0.05與板橋空氣品質監測站CO濃度之相關圖(N=14) 77 圖5 - 5(b)板橋花市公車站NC0.01-0.05與板橋空氣品質監測站NO濃度之相關圖(N=14) 78 圖5 - 5(c)板橋花市公車站NC0.01-0.05與板橋空氣品質監測站NO2濃度之相關圖(N=14) 78 圖5 - 5(d)板橋花市公車站NC0.01-0.05與板橋空氣品質監測站NOx濃度之相關圖(N=14) 79 圖5 - 5(e)板橋花市公車站NC0.01-0.05與板橋空氣品質監測站PM10濃度之相關圖(N=14) 79 圖5 - 6(a)忠孝東路五段公車站NC0.01-0.05與松山空氣品質監測站CO濃度之相關圖(N=18) 80 圖5 - 6(b)忠孝東路五段公車站NC0.01-0.05與松山空氣品質監測站NO濃度之相關圖(N=18) 80 圖5 - 6(c)忠孝東路五段公車站NC0.01-0.05與松山空氣品質監測站NO2濃度之相關圖(N=18) 81 圖5 - 6(d)忠孝東路五段公車站NC0.01-0.05與松山空氣品質監測站NOx濃度之相關圖(N=18) 81 圖5 - 6(e)忠孝東路五段公車站NC0.01-0.05與松山空氣品質監測站PM10濃度之相關圖(N=18) 82 圖5 – 4 台北火車站及捷運台北車站位置圖 83 圖5 – 5 劍潭站(採樣點A、B)在尖峰時段與非尖峰時段之三種不同粒徑範圍粒數濃度值 84 圖5-6忠孝西路一段公車站尖峰時間(7:00 ~ 9:00;17:00 ~ 19:00)與非尖峰時間之車輛數與粒數濃度分佈圖 86
author2 詹長權
臺灣大學:職業醫學與工業衛生研究所
format Thesis
author 曾元廷
Tseng, yuan-ting
author_facet 曾元廷
Tseng, yuan-ting
author_sort 曾元廷
title 台北捷運站、火車站及公車站超細粒徑懸浮微粒 濃度特性之研究
title_short 台北捷運站、火車站及公車站超細粒徑懸浮微粒 濃度特性之研究
title_full 台北捷運站、火車站及公車站超細粒徑懸浮微粒 濃度特性之研究
title_fullStr 台北捷運站、火車站及公車站超細粒徑懸浮微粒 濃度特性之研究
title_full_unstemmed 台北捷運站、火車站及公車站超細粒徑懸浮微粒 濃度特性之研究
title_sort 台北捷運站、火車站及公車站超細粒徑懸浮微粒 濃度特性之研究
publishDate 2005
url http://ntur.lib.ntu.edu.tw/handle/246246/59840
http://ntur.lib.ntu.edu.tw/bitstream/246246/59840/1/ntu-94-R92841016-1.pdf
genre Arctic
genre_facet Arctic
op_relation Adamson IY, Prieditis H, Vincent R. Pulmonary toxicity of an atmospheric particulate sample is due to the soluble fraction. Toxicol Appl Pharmacol 1999; 157(1):43-50. Burnett RT, Smith-Doiron M, Stieb D CS. Effect of particulate and gaseous air pollution on cardiorespiratory hospitalizations. Arch Environ Health 1999; 54:130-138. Buzorius G, Hameri K, Pekkanen J, Kulmala M. Spatial variation of aerosol number concentration in Helsinki city. Atmos Environ 1999; 33(4):553-565. Chan CC, Chuang KJ, Shiao GM, Lin LY. Personal exposure to submicrometer particles and heart rate variability in human subjects. Environ Health Perspect 2004; 112(10):1063-1067. Chalupa DC, Morrow PE, Oberdorster G, Utell MJ, Frampton MW. Ultrafine particle deposition in subjects with asthma. Environ Health Perspect 2004; 112(8):879-882. Goldsmith CA, Ning Y, Qin G, Imrich A, Lawrence J, Murthy GG, et al. Combined air pollution particle and ozone exposure increases airway responsiveness in mice. Inhal Toxicol 2002; 14(4):325-347. Gong H, Jr., Sioutas C, Linn WS. Controlled exposures of healthy and asthmatic volunteers to concentrated ambient particles in metropolitan Los Angeles. Res Rep Health Eff Inst 2003;(118):1-36; discussion 37-47. Gordon T, Nadziejko C, Schlesinger R, Chen LC. Pulmonary and cardiovascular effects of acute exposure to concentrated ambient particulate matter in rats. Toxicol Lett 1998; 96-97:285-288. Hasegawa S, Hirabayashi M, Kobayashi S, Moriguchi Y, Kondo Y, Tanabe K, et al. Size distribution and characterization of ultrafine particles in roadside atmosphere. J Environ Sci Health A Tox Hazard Subst Environ Eng 2004; 39(10):2671-2690. Hauser R, Godleski JJ, Hatch V, Christiani DC. Ultrafine particles in human lung macrophages. Arch Environ Health 2001; 56(2):150-156. Hitchins J, Morawska L, Wolff R, Gilbert D. Concentrations of submicrometre particles from vehicle emissions near a major road. Atmos Environ 2000; 34(1):51-59. Huang SL, Hsu MK, Chan CC. Effects of submicrometer particle compositions on cytokine production and lipid peroxidation of human bronchial epithelial cells. Environ Health Perspect 2003; 111(4):478-482. Hughes L, Cass GR, Gone J AM, Olmez I. Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles Area. Environ Sci and Technol 1998; 32(9):1153-1161. Kittelson DB. Engines and nanoparticles:A review. J Aerosol Sci 1998; 29:575-588. Kittelson DB, Watts WF, Johnson JP. Nanoparticle emissions on Minnesota highways. Atmos Environ 2004; 38(1):9-19. Kreyling WG, Tuch TM, Peters A, Pitz M, Heinrich J, Stolzel M, et al. Diverging long-term trends in ambient urban particle mass and number concentrations associated with emission changes caused by German unification. Atmos Environ 2003; 37(27):3841-3848. Laakso L, Hussein T, Aarnio P, Komppula M, Hiltunen V, Viisanen Y, et al. Diurnal and annual characteristics of particle mass number concentrations in urban, rural and Arctic environments in Finland. Atmos Environ 2003; 37(19):2629-2641. Lei YC, Chan CC, Wang PY, Lee CT, Cheng TJ. Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats. Environ Res 2004; 95(1):71-76. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003; 111(4):455-460. Longley ID, Gallagher MW, Dorsey JR, Flynn M, Allan JD, Alfarra MR, et al. A case study of aerosol (4.6nm< Dp<10 um) number and mass size distribution measurements in a busy street canyon in Manchester, Uk. Atmos Environ 2003; 37(12):1563-1571. Molnar P, Janhall S, Hallquist H. Roadside measurements of fine and ultrafine particles at a major road north of Gothenburg. Atmos Environ 2002; 36(25):4115-4123. Morawska L, Jayaratne ER, Mengersen K, Jamriska M, Thomas S. Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends. Atmos Environ 2002; 36(27):4375-4383. Morawska L, Thomas S, Gilbert D, Greenaway C, Rijnders E. A study of horizontal and vertical profile of submicrometer particles in relation to a busy road. Atmos Environ 1999; 33(8):1261-1274. Nemmar A, Hoet PH, Dinsdale D, Vermylen J, Hoylaerts MF, Nemery B. Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis. Circulation 2003; 107(8):1202-1208. Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, et al. Passage of inhaled particles into the blood circulation in humans. Circulation 2002; 105(4):411-414. Noble CA, Mukerjee S, Gonzales M, Rodes CE, Lawless PA, Natarajan S, et al. Continuous measurements of fine and ultrafine particle matter, criteria pollutants and meteorological conditions in urban EI Paso, Texas. Atmos Environ 2003; 37(6):827-840. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 2002; 65(20):1531-1543. Ostro BD, Broadwin R, Lipsett MJ. Coarse and fine particles and daily mortality in the Coachella Valley, California: a follow-up study. J Expo Anal Environ Epidemiol 2000; 10(5):412-419. Penttinen P, Timonen KL, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen J. Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur Respir J 2001; 17(3):428-435. Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 1997; 155(4):1376-1383. Pope CA, 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 2002; 287(9):1132-1141. Prescott GJ, Cohen GR, Elton RA, Fowkes FG, Agius RM. Urban air pollution and cardiopulmonary ill health: a 14.5 year time series study. Occup Environ Med 1998; 55(10):697-704. Pietropaoli AP, Frampton MW, Hyde RW, Morrow PE, Oberdorster G, Cox C, et al. Pulmonary function, diffusing capacity, and inflammation in healthy and asthmatic subjects exposed to ultrafine particles. Inhal Toxicol 2004; 16 Suppl 1:59-72. Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 2004; 61(5):442-447. Ruuskanen J, Tuch TM, Ten Brink H, Peters A, Khlystov A, Mirme A, et al. Concentratioan of ultrafine, fine and PM2.5 particles in three European cities. Atmos Environ 2001; 35(21):3729-3738. Salvi S, Blomberg A, Rudell B, Kelly F, Sandstrom T, Holgate ST, et al. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med 1999; 159(3):702-709. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. N Engl J Med 2000; 343(24):1742-1749. Shi JP, Khan AA, Harrison RM. Measurements of ultrafine particle concentration and size distribution in the urban atmosphere. the science of the total envuroment 1999; 235:51-64. Sioutas C, Delfino R.J., M. S. Exposure assesment for atmospheric ultrafine particles(UFP) and implications in epidemiological research. Submitted for publication to Environ Health Perspect 2005. Steerenberg PA, Zonnenberg JA, Dormans JA, Joon PN, Wouters IM, van Bree L, et al. Diesel exhaust particles induced release of interleukin 6 and 8 by (primed) human bronchial epithelial cells (BEAS 2B) in vitro. Exp Lung Res 1998; 24(1):85-100. Task Force of the European Society of Cardiology and the North European Society of Pacing and Electrophysiology. Heart rate variability standards of measurements, physiological interpretation and clinical use. Circulation 93: 1043-1065, 1996 Tuch TM, Wehner B, Pitz M, Cyrys J, Heinrich J, Kreyling WG, et al. Long-term measurements of sizesegregated ambient aerosol in two German cities located 100km apart. Atmos Environ 2003; 37(33):4687-4700. Utell MJ, Frampton MW. ULTRAFINE PARTICLE CONCENTRATIONS IN A HOSPITAL. Inhalation Toxicology 2000; Vol. 12 Issue 6:p83. Wehner B, Birmili W, Gnauk T, Wiedensohler A. Particle number size distributions in a street canyon and their transformation into the urban-air background:measurements and a simple model study. Atmos Environ 2002; 36:2215-2223. Wiedensohler A, Wehner B, Birmili W. Aerosol number concentrations and size distributions at mountain-rural, urban-influenced rural, and urban-background sites in Germany. J Aerosol Med 2002; 15(2):237-243. Woo KS, Chen DR, Pui DYH, McMurry PH. Measurement of atlanta aerosol size distributions:observations of ultrafine particle evevts. Aerosol science and technology 2001; 34:75-87. Xia T, Korge P, Weiss JN, Li N, Venkatesen MI, Sioutas C, et al. Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity. Environ Health Perspect 2004; 112(14):1347-1358. Yeh HC, Muggenburg BA, J.R. H. In vivo deposition of inhaled ultrfine particles in the respiratory track of Rhesus monkey. Aerosol Sci Technol 1997; 27:465-470. Yifang Zhu, William C Hinds, Seonghein Kim, Si Shen, Constantinos Sioutas. Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos Environ 2002; 36:4323-4335. Young LH, Keeler GJ. Characterization of ultrafine particle number concentration and size distribution during a summer campaign in southwest Detroit. J Air Waste Manag Assoc 2004; 54(9):1079-1090. Yu IJ, Kim KJ. Pattern of deposition of stainless steel welding fume particles inhaled into the respiratory systems of Sprague- Dawely rats exposed to a novel welding fume generating system. Toxicology Latters 2000; 116:103-111. Zhou YM, Zhong CY, Kennedy IM, Pinkerton KE. Pulmonary responses of acute exposure to ultrafine iron particles in healthy adult rats. Environ Toxicol 2003; 18:227-235. Zhu Y, Hinds WC, Kim S, Sioutas C. Concentration and size distribution of ultrafine particles near a major highway. J Air Waste Manag Assoc 2002; 52(9):1032-1042. 莊凱任,空氣污染引發之易感受族群急性健康效應之短期世代研究,國立臺灣大學職業醫學與工業衛生研究所碩士,2002 陳衍政,大氣懸浮微粒之細胞毒性研究-微粒粒徑與成分對A549細胞株釋放 細胞激素之影響,國立臺灣大學職業醫學與工業衛生研究所碩士,1998 王秋森,氣膠技術學,國立台灣大學醫學院出版委員會。(1993)
_version_ 1766302688650199040
spelling ftntaiwanuniv:oai:140.112.114.62:246246/59840 2023-05-15T14:28:32+02:00 台北捷運站、火車站及公車站超細粒徑懸浮微粒 濃度特性之研究 Characterization of ultrafine particles in mass rapid transit, train, and bus stations in Taipei. 曾元廷 Tseng, yuan-ting 詹長權 臺灣大學:職業醫學與工業衛生研究所 2005 3066320 bytes application/pdf http://ntur.lib.ntu.edu.tw/handle/246246/59840 http://ntur.lib.ntu.edu.tw/bitstream/246246/59840/1/ntu-94-R92841016-1.pdf zh-TW en_US chi eng Adamson IY, Prieditis H, Vincent R. Pulmonary toxicity of an atmospheric particulate sample is due to the soluble fraction. Toxicol Appl Pharmacol 1999; 157(1):43-50. Burnett RT, Smith-Doiron M, Stieb D CS. Effect of particulate and gaseous air pollution on cardiorespiratory hospitalizations. Arch Environ Health 1999; 54:130-138. Buzorius G, Hameri K, Pekkanen J, Kulmala M. Spatial variation of aerosol number concentration in Helsinki city. Atmos Environ 1999; 33(4):553-565. Chan CC, Chuang KJ, Shiao GM, Lin LY. Personal exposure to submicrometer particles and heart rate variability in human subjects. Environ Health Perspect 2004; 112(10):1063-1067. Chalupa DC, Morrow PE, Oberdorster G, Utell MJ, Frampton MW. Ultrafine particle deposition in subjects with asthma. Environ Health Perspect 2004; 112(8):879-882. Goldsmith CA, Ning Y, Qin G, Imrich A, Lawrence J, Murthy GG, et al. Combined air pollution particle and ozone exposure increases airway responsiveness in mice. Inhal Toxicol 2002; 14(4):325-347. Gong H, Jr., Sioutas C, Linn WS. Controlled exposures of healthy and asthmatic volunteers to concentrated ambient particles in metropolitan Los Angeles. Res Rep Health Eff Inst 2003;(118):1-36; discussion 37-47. Gordon T, Nadziejko C, Schlesinger R, Chen LC. Pulmonary and cardiovascular effects of acute exposure to concentrated ambient particulate matter in rats. Toxicol Lett 1998; 96-97:285-288. Hasegawa S, Hirabayashi M, Kobayashi S, Moriguchi Y, Kondo Y, Tanabe K, et al. Size distribution and characterization of ultrafine particles in roadside atmosphere. J Environ Sci Health A Tox Hazard Subst Environ Eng 2004; 39(10):2671-2690. Hauser R, Godleski JJ, Hatch V, Christiani DC. Ultrafine particles in human lung macrophages. Arch Environ Health 2001; 56(2):150-156. Hitchins J, Morawska L, Wolff R, Gilbert D. Concentrations of submicrometre particles from vehicle emissions near a major road. Atmos Environ 2000; 34(1):51-59. Huang SL, Hsu MK, Chan CC. Effects of submicrometer particle compositions on cytokine production and lipid peroxidation of human bronchial epithelial cells. Environ Health Perspect 2003; 111(4):478-482. Hughes L, Cass GR, Gone J AM, Olmez I. Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles Area. Environ Sci and Technol 1998; 32(9):1153-1161. Kittelson DB. Engines and nanoparticles:A review. J Aerosol Sci 1998; 29:575-588. Kittelson DB, Watts WF, Johnson JP. Nanoparticle emissions on Minnesota highways. Atmos Environ 2004; 38(1):9-19. Kreyling WG, Tuch TM, Peters A, Pitz M, Heinrich J, Stolzel M, et al. Diverging long-term trends in ambient urban particle mass and number concentrations associated with emission changes caused by German unification. Atmos Environ 2003; 37(27):3841-3848. Laakso L, Hussein T, Aarnio P, Komppula M, Hiltunen V, Viisanen Y, et al. Diurnal and annual characteristics of particle mass number concentrations in urban, rural and Arctic environments in Finland. Atmos Environ 2003; 37(19):2629-2641. Lei YC, Chan CC, Wang PY, Lee CT, Cheng TJ. Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats. Environ Res 2004; 95(1):71-76. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003; 111(4):455-460. Longley ID, Gallagher MW, Dorsey JR, Flynn M, Allan JD, Alfarra MR, et al. A case study of aerosol (4.6nm< Dp<10 um) number and mass size distribution measurements in a busy street canyon in Manchester, Uk. Atmos Environ 2003; 37(12):1563-1571. Molnar P, Janhall S, Hallquist H. Roadside measurements of fine and ultrafine particles at a major road north of Gothenburg. Atmos Environ 2002; 36(25):4115-4123. Morawska L, Jayaratne ER, Mengersen K, Jamriska M, Thomas S. Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends. Atmos Environ 2002; 36(27):4375-4383. Morawska L, Thomas S, Gilbert D, Greenaway C, Rijnders E. A study of horizontal and vertical profile of submicrometer particles in relation to a busy road. Atmos Environ 1999; 33(8):1261-1274. Nemmar A, Hoet PH, Dinsdale D, Vermylen J, Hoylaerts MF, Nemery B. Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis. Circulation 2003; 107(8):1202-1208. Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, et al. Passage of inhaled particles into the blood circulation in humans. Circulation 2002; 105(4):411-414. Noble CA, Mukerjee S, Gonzales M, Rodes CE, Lawless PA, Natarajan S, et al. Continuous measurements of fine and ultrafine particle matter, criteria pollutants and meteorological conditions in urban EI Paso, Texas. Atmos Environ 2003; 37(6):827-840. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 2002; 65(20):1531-1543. Ostro BD, Broadwin R, Lipsett MJ. Coarse and fine particles and daily mortality in the Coachella Valley, California: a follow-up study. J Expo Anal Environ Epidemiol 2000; 10(5):412-419. Penttinen P, Timonen KL, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen J. Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur Respir J 2001; 17(3):428-435. Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 1997; 155(4):1376-1383. Pope CA, 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 2002; 287(9):1132-1141. Prescott GJ, Cohen GR, Elton RA, Fowkes FG, Agius RM. Urban air pollution and cardiopulmonary ill health: a 14.5 year time series study. Occup Environ Med 1998; 55(10):697-704. Pietropaoli AP, Frampton MW, Hyde RW, Morrow PE, Oberdorster G, Cox C, et al. Pulmonary function, diffusing capacity, and inflammation in healthy and asthmatic subjects exposed to ultrafine particles. Inhal Toxicol 2004; 16 Suppl 1:59-72. Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 2004; 61(5):442-447. Ruuskanen J, Tuch TM, Ten Brink H, Peters A, Khlystov A, Mirme A, et al. Concentratioan of ultrafine, fine and PM2.5 particles in three European cities. Atmos Environ 2001; 35(21):3729-3738. Salvi S, Blomberg A, Rudell B, Kelly F, Sandstrom T, Holgate ST, et al. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med 1999; 159(3):702-709. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. N Engl J Med 2000; 343(24):1742-1749. Shi JP, Khan AA, Harrison RM. Measurements of ultrafine particle concentration and size distribution in the urban atmosphere. the science of the total envuroment 1999; 235:51-64. Sioutas C, Delfino R.J., M. S. Exposure assesment for atmospheric ultrafine particles(UFP) and implications in epidemiological research. Submitted for publication to Environ Health Perspect 2005. Steerenberg PA, Zonnenberg JA, Dormans JA, Joon PN, Wouters IM, van Bree L, et al. Diesel exhaust particles induced release of interleukin 6 and 8 by (primed) human bronchial epithelial cells (BEAS 2B) in vitro. Exp Lung Res 1998; 24(1):85-100. Task Force of the European Society of Cardiology and the North European Society of Pacing and Electrophysiology. Heart rate variability standards of measurements, physiological interpretation and clinical use. Circulation 93: 1043-1065, 1996 Tuch TM, Wehner B, Pitz M, Cyrys J, Heinrich J, Kreyling WG, et al. Long-term measurements of sizesegregated ambient aerosol in two German cities located 100km apart. Atmos Environ 2003; 37(33):4687-4700. Utell MJ, Frampton MW. ULTRAFINE PARTICLE CONCENTRATIONS IN A HOSPITAL. Inhalation Toxicology 2000; Vol. 12 Issue 6:p83. Wehner B, Birmili W, Gnauk T, Wiedensohler A. Particle number size distributions in a street canyon and their transformation into the urban-air background:measurements and a simple model study. Atmos Environ 2002; 36:2215-2223. Wiedensohler A, Wehner B, Birmili W. Aerosol number concentrations and size distributions at mountain-rural, urban-influenced rural, and urban-background sites in Germany. J Aerosol Med 2002; 15(2):237-243. Woo KS, Chen DR, Pui DYH, McMurry PH. Measurement of atlanta aerosol size distributions:observations of ultrafine particle evevts. Aerosol science and technology 2001; 34:75-87. Xia T, Korge P, Weiss JN, Li N, Venkatesen MI, Sioutas C, et al. Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity. Environ Health Perspect 2004; 112(14):1347-1358. Yeh HC, Muggenburg BA, J.R. H. In vivo deposition of inhaled ultrfine particles in the respiratory track of Rhesus monkey. Aerosol Sci Technol 1997; 27:465-470. Yifang Zhu, William C Hinds, Seonghein Kim, Si Shen, Constantinos Sioutas. Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos Environ 2002; 36:4323-4335. Young LH, Keeler GJ. Characterization of ultrafine particle number concentration and size distribution during a summer campaign in southwest Detroit. J Air Waste Manag Assoc 2004; 54(9):1079-1090. Yu IJ, Kim KJ. Pattern of deposition of stainless steel welding fume particles inhaled into the respiratory systems of Sprague- Dawely rats exposed to a novel welding fume generating system. Toxicology Latters 2000; 116:103-111. Zhou YM, Zhong CY, Kennedy IM, Pinkerton KE. Pulmonary responses of acute exposure to ultrafine iron particles in healthy adult rats. Environ Toxicol 2003; 18:227-235. Zhu Y, Hinds WC, Kim S, Sioutas C. Concentration and size distribution of ultrafine particles near a major highway. J Air Waste Manag Assoc 2002; 52(9):1032-1042. 莊凱任,空氣污染引發之易感受族群急性健康效應之短期世代研究,國立臺灣大學職業醫學與工業衛生研究所碩士,2002 陳衍政,大氣懸浮微粒之細胞毒性研究-微粒粒徑與成分對A549細胞株釋放 細胞激素之影響,國立臺灣大學職業醫學與工業衛生研究所碩士,1998 王秋森,氣膠技術學,國立台灣大學醫學院出版委員會。(1993) 超細粒徑懸浮微粒 大眾運輸車站 粒數濃度 通勤者 暴露評估 ultrafine particles public transportation station number concentration commuter exposure assessment thesis 2005 ftntaiwanuniv 2016-02-20T00:13:10Z 目的:本研究針對台北都會區公車站、火車站及捷運站等大眾運輸車站環境中NC0.01-0.1( ultrafine particles,微粒粒徑<100nm )懸浮微粒之濃度與粒徑分佈情況及大眾運輸使用者暴露量進行比較研究。 方法:本研究環境採樣期間為2005年1月17日至2005年3月18日,使用SMPS+C以及DUSTTMcheck為採樣儀器,採集環境中之微粒粒數濃度與質量濃度值。總計於四處公車站(忠孝西路一段、板橋花市、忠孝東路五段、捷運劍潭站),三處火車站(台北火車站、板橋火車站、松山火車站)以及四處捷運站(台北車站、新埔站、永春站、劍潭站)進行11次現場採樣,每個採樣點均進行一次為期17.5小時的採樣。分析過程中我們分為NC0.01-0.1(微粒粒徑 < 100nm之粒數濃度)以及NC0.01-0.05(微粒粒徑 < 50nm之粒數濃度)兩個粒徑範圍進行討論,以了解大眾運輸環境中懸浮微粒粒數濃度以及粒徑分佈情形。此外,我們結合各車站測得之NC0.01-0.1濃度、候車時間及呼吸量來估計大眾運輸工具使用者之暴露量。 結果:研究結果發現NC0.01-0.1微粒粒數濃度值高低依序為公車站(12.8 × 104 cm-3)、室內火車站(6.38 × 104cm-3)以及室內捷運站(3.63 × 104cm-3);而火車站與捷運站位於不同室內外環境之比較,則是室外車站之粒數濃度低於室內車站。上班、下班交通尖峰時段與非尖峰時段,微粒粒數濃度變化差異在公車站以及捷運站有達到統計上的顯著(P-value<0.05),但在火車站並沒有類似的趨勢。在NC0.01-0.05粒徑範圍也有相同的發現。此外,在微粒粒徑分佈結果可發現公車站環境中微粒粒數濃度,主要分佈在粒徑小於50 nm以下之範圍,其佔微粒總粒數濃度約78.5%。火車站及捷運站的比例則分別為46.6%與47.1%。成年人於公車站、火車站及捷運站之年平均NC0.01-0.1暴露量為1.77 × 1013顆、5.76 × 1012顆及2.84 × 1012顆。 結論:大眾運輸公車站、火車站及捷運站環境中NC0.01-0.1之粒數濃度值,會因為與汽機車排放源遠近而有所差異,公車站濃度顯著高於火車站及捷運站。此項濃度差異導致搭乘公車之成人使用者年平均NC0.01-0.1暴露量較火車站高1.19 × 1013顆,較捷運站高1.48 × 1013顆。 關鍵字:超細粒徑懸浮微粒、大眾運輸車站、粒數濃度、通勤者、暴露評估 Objective: This study is designed to characterize NC0.01-0.1(number concentrations of ultrafine particles with size between 10nm ~ 100 nm) at public transportation stations, including mass rapid transit (MRT), train, and bus stations, in Taipei. Method: The number concentrations and size distribution of PM with size range 9.8-874.5 nm(Total number concentrations) were measured by a scanning mobility particle sizer(SMPS) at four bus stations, three train stations, and four mass rapid(MRT) stations in Taipei from January 17th to March 18th, 2005. The sampled period at each station is 17.5 hours. We focused our study on two particle sizes, i.e. NC0.01-0.1 and NC0.01-0.05(number concentrations of ultrafine particles with size between 10nm ~ 50 nm). NC0.01-0.1 exposures of public transportation users were estimated by combining NC0.01-0.1 concentrations at stations and commuters’ waiting time, and ventilation rate together. Result: Hourly average number concentrations of NC0.01-0.1 at bus, train and MRT stations were 12.8 × 104 cm-3, 6.38 × 104cm-3 and 3.63 × 104cm-3, respectively. For train and MRT stations, the number concentrations of NC0.01-0.1 at indoors were higher than those outdoors. Moreover, the number concentrations at MRT and bus stations in rush hours were higher than those in non-rush hours.We found the same results for NC0.01-0.05. The percentage of number concentrations of accounted for NC0.01-0.05 about 78.5% at bus stations, 46.6% at train stations, and 47.1% at MRT stations. Adult commuters’ annual NC0.01-0.1 exposures were 1.77 × 1013counts at bus stations, 5.76 × 1012counts at train stations, and 2.84 × 1012counts at MRT stations. Conclusion: The NC0.01-0.1 concentrations in public transportation stations varied by the distance between the stations and on-road vehicle emission sources in Taipei. The NC0.01-0.1 concentrations in bus stations were significantly higher than those in train and MRT stations. Accordingly, bus users annual NC0.01-0.1 exposures were 1.19 × 1013counts higher than train users, and 1.48 × 1013counts higher than MRT users. 第一章 前 言 1 1.1 研究緣起 1 1.2 研究目的 3 第二章 文獻探討 4 2.1微粒毒性研究對健康效應 4 2.1.1流行病學研究 4 2.1.2 動物毒性研究 6 2.1.3 細胞毒性實驗 7 2.2 環境中超細微粒分佈研究 9 第三章 材料與方法 15 3.1 研究流程 15 3.2 研究設計 16 3.2.1 採樣地點 17 3.2.2 採樣時間 20 3.2.3 採樣儀器 22 3.2.4統計分析 25 第四章 研究結果 30 4.1大眾運輸車站環境中 NC0.01-0.05與NC0.01-0.1粒數濃度分佈 31 4.1.1公車站NC0.01-0.05與NC0.01-0.1微粒濃度分佈 31 4.1.2火車站NC0.01-0.05與NC0.01-0.1微粒濃度分佈 32 4.1.3捷運站NC0.01-0.05與NC0.01-0.1微粒濃度分佈 33 4.1.4公車站、火車站及捷運站間NC0.01-0.05與NC0.01-0.1微粒濃度比較 35 4.2大眾運輸車站環境中TN粒數濃度分佈以及PM1/PM2.5/PM10質量濃度 36 4.2.1公車站環境中TN微粒濃度分佈以及PM1/PM2.5/PM10質量濃度 36 4.2.2火車站環境中TN微粒濃度分佈以及PM1/PM2.5/PM10質量濃度 36 4.2.3捷運站環境中TN微粒濃度分佈以及PM1/PM2.5/PM10質量濃度 36 4.2.4公車站、火車站及捷運站間TN微粒濃度以及PM1/PM2.5/PM10質量濃 度比較 37 第五章 討論 52 5.1不同車站環境粒數濃度差異 52 5.2交通尖峰時段、非尖峰時段與車站環境粒數濃度之相關 57 5.3特殊事件對車站環境中微粒質量濃度之影響 59 5.4暴露餘超細粒徑懸浮微粒之健康影響效應 61 5.4.1不同車站暴露濃度之差異 61 5.4.2急性健康效應比較 62 5.4.3長期健康效應比較 62 5.5研究限制 64 5.6結論與建議 65 參考文獻 87 附錄A 公車站、火車站以及捷運站微粒質量濃度與交通尖峰非尖峰時期之平均值、標準差及ANOVA統計值 93 附錄B 各採樣點之位置圖 96 附錄 C 公車站環境中,NC0.01-0.1各粒徑範圍粒數濃度與CO、NO、NO2、NOx、SO2濃度以及風速之相關性 107 表目錄 表2 - 1相關研究之粒數濃度值分佈 14 表4 – 1(a)公車站、火車站及捷運站之TN粒數濃度與PM1.0、PM2.5、PM10質量濃度平均值、標準差、最大值、中位數及最小值(採樣時間6:00∼23:30) 38 表4 – 1(b)公車站、火車站及捷運站之TN粒數濃度與PM1.0、PM2.5、PM10質量濃度平均值、標準差、最大值、中位數及最小值(採樣時間6:00∼23:30) 39 表4 – 2公車站、火車站及捷運站環境中之NC0.01-0.05粒徑微粒粒數濃度平均值、標準差、最大值、中位數及最小值(採樣時間6:00∼23:30) 40 表4 – 3 公車站、火車站及捷運站環境中之NC0.01-0.1粒徑微粒粒數濃度平均值、標準差、最大值、中位數及最小值(採樣時間6:00∼23:30) 41 表4 - 4公車站、火車站及捷運站環境中之NC0.01-0.05粒徑微粒粒數濃度於交通尖峰時期(7:00 ~ 9:00;17:00 ~ 19:00)與非尖鋒時期(11:00 ~ 13:00)之平均值、標準差及ANOVA統計值 42 表4 – 5公車站、火車站及捷運站環境中之NC0.01-0.1粒徑微粒粒數濃度於交通尖峰時期(7:00 ~ 9:00;17:00 ~ 19:00)與非尖鋒時期(11:00 ~ 13:00)之平均值、標準差及ANOVA統計值 43 表4 - 6公車站、火車站及捷運站環境中之TN粒徑微粒粒數濃度於交通尖峰時期(7:00 ~ 9:00;17:00 ~ 19:00)與非尖鋒時期(11:00 ~ 13:00)之平均值、標準差及ANOVA統計值 44 表4 – 7(a) NC0.009-0.05、NC0.009-0.1、TN粒數濃度濃度於公車站、火車站和捷運站平均值、標準差及ANOVA之統計值(採樣時間:6:00∼23:30) 45 表4 - 7(b) PM1.0、PM2.5、PM10質量濃度於公車站、火站和捷運站平均值、標準差及ANOVA之統計值(採樣時間:6:00∼23:30) 46 表5 - 1 國外相關研究中超細懸浮微粒(NC0.01-0.1)粒數濃度值 56 表5 - 2 忠孝西路一段公車站尖峰時間(7:00 ~ 9:00;17:00 ~ 19:00)與非尖峰時間之車輛數與粒數濃度 85 圖目錄 圖3 - 1大眾運輸車站採樣地點一覽 17 圖3 - 2忠孝西路一段公車站、台北火車站、捷運台北車站採樣位置 26 圖3 - 3板橋花市公車站、捷運新埔站採樣位置 26 圖3 - 4忠孝東路五段公車站、捷運永春站採樣位置 27 圖3– 5捷運劍潭站公車站、捷運劍潭站採樣位置 27 圖3 - 6 板橋火車站採樣位置 28 圖3 - 8 DMA (靜電分徑儀) 22 圖3 - 9 CPC (凝結核微粒計數器) 22 圖3 - 7松山火車站採樣位置 28 圖3 - 10微粒電移動度掃瞄分徑器(SMPS+C) 29 圖3 - 11粒數質量濃度監測儀 29 圖4 – 1 TN微粒於公車站(忠孝西路一段公車站)、火車站(台北火車站)及捷運站(台北車站)之粒徑分佈圖 47 圖4 – 2 NC0.01-0.1微粒於公車站(忠孝西路一段公車站)、火車站(台北火車站)及捷運站(台北車站)之粒徑分佈圖 48 圖4 - 3NC0.01-0.1微粒於公車站(板橋花市公車站)、火車站(板橋火車站)及捷運站(新埔站)之粒徑分佈圖 49 圖4 - 4 NC0.01-0.1微粒於公車站(忠孝東路五段公車站)、火車站(松山火車站)及捷運站(永春站)之粒徑分佈圖 50 圖4 – 5 NC0.01-0.1微粒於公車站(劍潭捷運站公車站)及捷運站(劍潭站)之粒徑分佈圖 51 圖5 – 1(a)忠孝西路一段公車站NC0.01-0.05粒數濃度(N=17)與中山空氣品質監測站CO濃度變化趨勢圖(N=17) 67 圖5 – 1(b)忠孝西路一段公車站NC0.01-0.05粒數濃度(N=17)與中山空氣品質監測站NO濃度變化趨勢圖(N=17) 67 圖5 – 1(c)忠孝西路一段公車站NC0.01-0.05粒數濃度(N=17)與中山空氣品質監測站NO2濃度變化趨勢圖(N=17) 68 圖5 – 1(d)忠孝西路一段公車站NC0.01-0.05粒數濃度(N=17)與中山空氣品質監測站NOX濃度變化趨勢圖(N=17) 68 圖5 – 1(e)忠孝西路一段公車站NC0.01-0.05粒數濃度(N=17)與中山空氣品質監測站PM10濃度變化趨勢圖(N=17) 69 圖5 – 2(a)板橋花市公車站NC0.01-0.05粒數濃度(N=18)與板橋空氣品質監測站CO濃度(N=15)變化趨勢圖 69 圖5 – 2(b)板橋花市公車站NC0.01-0.05粒數濃度(N=18)與板橋空氣品質監測站NO濃度變(N=15)化趨勢圖 70 圖5 – 2 (c)板橋花市公車站NC0.01-0.05粒數濃度(N=18)與板橋空氣品質監測站NO2濃度(N=15)變化趨勢圖 70 圖5 – 2(d)板橋花市公車站NC0.01-0.05粒數濃度(N=18)與板橋空氣品質監測站NOX濃度(N=15)變化趨勢圖 71 圖5 – 2(e)板橋花市公車站NC0.01-0.05粒數濃度(N=18)與板橋空氣品質監測站PM10濃度(N=15)變化趨勢圖 71 圖5 – 2(a)忠孝東路五段公車站NC0.01-0.05粒數濃度(N=18)與松山空氣品質監測站CO濃度(N=18)變化趨勢圖 72 圖5 – 2(b)忠孝東路五段公車站NC0.01-0.05粒數濃度(N=18)與松山空氣品質監測站NO濃度(N=18)變化趨勢圖 72 圖5 – 3(c)忠孝東路五段公車站NC0.01-0.05粒數濃度(N=18)與松山空氣品質監測站NO2濃度(N=18)變化趨勢圖 73 圖5 – 3(d)忠孝東路五段公車站NC0.01-0.05粒數濃度(N=18)與松山空氣品質監測站NOX濃度(N=18)變化趨勢圖 73 圖5 – 3(d)忠孝東路五段公車站NC0.01-0.05粒數濃度(N=18)與松山空氣品質監測站PM10濃度(N=18)變化趨勢圖 74 圖5 - 4(a)忠孝西路一段公車站NC0.01-0.05與中山空氣品質監測站CO濃度之相關圖(N=16) 75 圖5 - 4(b)忠孝西路一段公車站NC0.01-0.05與中山空氣品質監測站NO濃度之相關圖(N=16) 75 圖5 - 4(c)忠孝西路一段公車站NC0.01-0.05與中山空氣品質監測站NO2濃度之相關圖(N=16) 76 圖5 - 4(d)忠孝西路一段公車站NC0.01-0.05與中山空氣品質監測站NOx濃度之相關圖(N=16) 76 圖5 - 4(e)忠孝西路一段公車站NC0.01-0.05與中山空氣品質監測站PM10濃度之相關圖(N=14) 77 圖5 - 5(a)板橋花市公車站NC0.01-0.05與板橋空氣品質監測站CO濃度之相關圖(N=14) 77 圖5 - 5(b)板橋花市公車站NC0.01-0.05與板橋空氣品質監測站NO濃度之相關圖(N=14) 78 圖5 - 5(c)板橋花市公車站NC0.01-0.05與板橋空氣品質監測站NO2濃度之相關圖(N=14) 78 圖5 - 5(d)板橋花市公車站NC0.01-0.05與板橋空氣品質監測站NOx濃度之相關圖(N=14) 79 圖5 - 5(e)板橋花市公車站NC0.01-0.05與板橋空氣品質監測站PM10濃度之相關圖(N=14) 79 圖5 - 6(a)忠孝東路五段公車站NC0.01-0.05與松山空氣品質監測站CO濃度之相關圖(N=18) 80 圖5 - 6(b)忠孝東路五段公車站NC0.01-0.05與松山空氣品質監測站NO濃度之相關圖(N=18) 80 圖5 - 6(c)忠孝東路五段公車站NC0.01-0.05與松山空氣品質監測站NO2濃度之相關圖(N=18) 81 圖5 - 6(d)忠孝東路五段公車站NC0.01-0.05與松山空氣品質監測站NOx濃度之相關圖(N=18) 81 圖5 - 6(e)忠孝東路五段公車站NC0.01-0.05與松山空氣品質監測站PM10濃度之相關圖(N=18) 82 圖5 – 4 台北火車站及捷運台北車站位置圖 83 圖5 – 5 劍潭站(採樣點A、B)在尖峰時段與非尖峰時段之三種不同粒徑範圍粒數濃度值 84 圖5-6忠孝西路一段公車站尖峰時間(7:00 ~ 9:00;17:00 ~ 19:00)與非尖峰時間之車輛數與粒數濃度分佈圖 86 Thesis Arctic National Taiwan University Institutional Repository (NTUR)