在斑馬魚中利用小片段核醣核酸干擾疫苗抑制神經壞死病毒

神經壞死病毒(NNV)在水產養殖上為一重要的魚類病毒,尤其在石斑魚的養殖上更是造成嚴重的經濟損失。NNV屬於結病毒科(Nodaviridae)的betanodavirus屬,神經壞死病毒的病毒顆粒大小在25∼30微米左右,無封套膜、二十面體,屬於核糖核酸病毒,具有兩段單股的正股RNA,稱為RNA1與RNA2,RNA1所產生的蛋白質為RNA 聚合酶;而RNA2所產生的蛋白質為鞘蛋白(capsid protein),主要是組成病毒外殼。石斑魚從卵孵化到吋苗的這段期間內,遭受NNV病毒感染的機率極大,被感染的魚苗會有不正常如旋轉般的游動情況,稱為飛旋症;感染後並會引起魚的神經壞死(viral ner...

Full description

Bibliographic Details
Main Authors: 蔡翰甽, Tsai, Han-Chuan
Other Authors: 吳金洌, 臺灣大學:漁業科學研究所
Format: Text
Language:English
Published: 2006
Subjects:
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/59315
http://ntur.lib.ntu.edu.tw/bitstream/246246/59315/1/ntu-95-R93b45012-1.pdf
id ftntaiwanuniv:oai:140.112.114.62:246246/59315
record_format openpolar
institution Open Polar
collection National Taiwan University Institutional Repository (NTUR)
op_collection_id ftntaiwanuniv
language English
topic 神經壞死病毒
核醣核酸干擾
斑馬魚
nerve necrosis virus
siRNA
zebrafish
spellingShingle 神經壞死病毒
核醣核酸干擾
斑馬魚
nerve necrosis virus
siRNA
zebrafish
蔡翰甽
Tsai, Han-Chuan
在斑馬魚中利用小片段核醣核酸干擾疫苗抑制神經壞死病毒
topic_facet 神經壞死病毒
核醣核酸干擾
斑馬魚
nerve necrosis virus
siRNA
zebrafish
description 神經壞死病毒(NNV)在水產養殖上為一重要的魚類病毒,尤其在石斑魚的養殖上更是造成嚴重的經濟損失。NNV屬於結病毒科(Nodaviridae)的betanodavirus屬,神經壞死病毒的病毒顆粒大小在25∼30微米左右,無封套膜、二十面體,屬於核糖核酸病毒,具有兩段單股的正股RNA,稱為RNA1與RNA2,RNA1所產生的蛋白質為RNA 聚合酶;而RNA2所產生的蛋白質為鞘蛋白(capsid protein),主要是組成病毒外殼。石斑魚從卵孵化到吋苗的這段期間內,遭受NNV病毒感染的機率極大,被感染的魚苗會有不正常如旋轉般的游動情況,稱為飛旋症;感染後並會引起魚的神經壞死(viral nervous necrosis, VNN),腦脊髓炎(encephalomyelitis)和液泡形成、腦病和視網膜病變(vacuolating encephalopathy and retinopathy, VER),並造成大量的死亡,死亡率甚至會高達90~100%也是近年來在石斑魚養殖上所面臨最嚴重的病毒性疾病。 核糖核酸干擾(RNAi)技術在近幾年來被詳細的探討與應用,對於抑制基因的表現上被視為一重要的工具。本實驗我們預計利用核糖核酸干擾技術發展抗NNV病毒的水產疫苗,而基於疫苗作用的持續時間與成本上的考量,我們將嘗試以DNA載體為基礎的siRNA來發展疫苗。經由建立的siRNA穩定表現魚體的品系,做病毒感染的結果顯示,比較控制組,其F1子代能擁有較高的存活比率。原位雜交的結果更是顯示siRNA的表現載體,能在魚體內成功的產生siRNA的片段,這將讓我們更具信心將此技術應用於發展石斑魚抗NNV病毒的疫苗上。 而本實驗另一項重要的目的便是探討利用微脂粒(nano-liposome)作為傳遞系統來發展疫苗的可行性。我們利用六種不同配方之微酯粒(nano-liposome)包裹能表現紅螢光的siRNA之構築體,混合魚類飼料(孵化之豐年蝦),經由投餵方式讓一個月大之斑馬魚(zebrafish)食入,接著觀察其在魚體內表現之情形。確定其食入後16小時,將魚體置於螢光顯微鏡下觀察,發現斑馬魚腹部有很強之紅螢光表現。 接著對魚體做各個組織分離,抽取RNA後做RT-PCR,結果顯示,腦,心臟,眼睛,腸,甚至肌肉都能偵測到螢光基因的表現,而免疫組織染色也得到類似的結果。表示利用微酯粒包覆混合飼料餵食法,能夠成功的將基因帶入生物體內,進而使其能有效的在體內表現。這樣的結果我們預測利用如此的傳遞系統對未來應用於腸道基因轉殖或是疫苗的製造將有其發展的潛力。 Viral infections have been increasingly reported in cultured marine fish. Among these infections, viral encephalopathy and retinopathy (VER), caused by betanodaviruses (piscine nodavirus), is one of the most devastating, occurring in a variety of marine fish all over the world. Disease control would evolve an important issue for the whole world aquatic industry. Histological examination of tissues from the central nervous system and the retina often reveals areas of conspicuous tissue vacuolation and necrosis. Their genome consists of two molecules of messenger sense RNA. RNA1 is approximately 3.1 kb in size and carries the gene that encodes for an RNA-dependent RNA polymerase referred to as protein A; RNA2 is approximately 1.4 kb in size and contains the open reading frame that encodes the capsid protein. Short interfering RNAs (siRNAs) have proved to be a useful tool in studying gene function. Recently, small interfering RNAs (siRNAs) have been used for gene knockdown in mammalian cultured cells, but their utility in fish has remained unexplored. In this thesis study, we want to development anti-fish virus by using RNAi technology, and nano-liposome was the delivery system that we used in this experiment. We constructed 4 sets of siRNA vectors containing NNV's RNA2 gene in the position at 93, 585, 730 and 1024 nt. We also constructed the plasmids with HcRed gene regarding as siRNA detection marker. My experiment is separated into two parts: one is using siRNA expression vector inject zebrafish to single out stable line, and the F2 generation was challenge by NNV. There is higher survival rate compared to control. In the F1 generation, we could detect fluorescence marker gene in expression vector by RT-PCR. The other part:we used nano-liposome as DNA deliver tool with oral administration in zebrafish. Six different formulations of liposome were examined for the fluorescent marker gene of siRNA expression vector . The zebrafish was fed with nona-liposome, 4 h to 12 h after feeding, and the samples were collected at every interval of 2 h of this period. At 16 h after liposome feeding, there was strong fluorescence expressing in several organs including heart, eye and intestine etc. The result of in situ hybridization demonstrated vector-mediated siRNA could be expressed in zebrafishes. Therefore, vector-based siRNA delivered by nano-liposome has the potential to be the vaccine that against aquatic virus.in aquaculture. Content English abstract……………………………………………………….i Chinese abstract……………………………………………………….iii Introduction…………………………………………………………1 Materials .……………………………………………8 A. Biotic materials…………………………………………………….8 1. Zebrafish (Danio rerio)……………………………………….8 2. Virus……………………………………………………………8 3. Competent cell………………………………………………….9 4. Plasmids……………………………………………………….9 5. The formulation of lipoplex…………………………………….9 B. Equipments and instruments……………………………………….10 1. High speed centrifuge………………………………………….10 2. Centrifuge t…………………………………………………….10 3. Electrophoresis equipment…………………………………….10 4. PCR system………………………………………………….….10 5. Spectrophotometer………………………………………….10 6. Fluorescent microscope…………………………………………10 7. Glassmicroelectrode puller…………………………………….10 8. Microinjector……………………………………………………10 9. Microgrinder…………………………………………………….10 10. Polytron…………………………………………………………10 11. pH meter……………………………………………………….10 12. CO2 water jacketed incubator………………………………….10 13. Vortex Mixer…………………………………………………….10 C. Reaction reagents………………………………………………….10 1. Bacterial medium……………………………………………….11 2. Enzymes.12 3. Molecular weight marker……………………………………….12 D. Biotic Reaction Reagent Kits……………………………………….13 1. QIAquick® Gel Extraction Kit (QIAGEN)…………………….13 2. PureLinkTM HiPure Plasmid DNA Purification Kits (Invitrogen).13 3. SuperScriptTM III First-Strand Synthesis System for RT-PCR (Invitrogen)………………………………………………………13 4. RNA-spinTM Total RNA Extraction Kit 【For cell/tissue】…….13 5. Platinum® Taq DNA polymerase (Invitrogen)………………….13 6. SuperScriptTM III One-Step RT-PCR System with Platinum® Taq DNA polymerase (Invitrogen)………………………………….13 7. PureLinkTM HiPure Plasmid Maxiprep Kits (Invitrogen)……….13 E. Reaction solution and buffer…………………………………………13 1. DNA electrophoresis and buffers……………………………….13 2. RNA electrophoresis and buffers……………………………….14 3. Plasmid boiling prep. - Extraction buffer ( Lysis buffer )……….14 4. PEG solution for competent cell (Calcium Chloride solution)….15 5. In Situ Hybridization buffers…………………………………….15 F. Medium/Buffer for Cell Culture…………………………………….17 Cell culture medium……………………………………………….17 G. Cell culture Drugs……………………………………………………28 H. Chemical Drugs …………………………………………………….19 1. Tris-base, glacial acetic acid, NaCl, Glucose, potassium acetate, EDTA, HCl, NaOH, Chloroform, Formamide, Formaldehyde, Ethidium bromid (EtBr), Ampicillin, ammonium persulfate, Methanol. (Merk)……………………………………………….19 2. Saturated phenol for DNA (AMRESCO)……………………….19 3. Bacto-agar, yeast extract, Bacto-trypton (DIFCO)……………….19 4. SeaKem® LE agarose (CAMBRREX)………………………….19 5. SeaKem® GTG agarose (CAMBRREX)…………………………19 6. TRIZOL® reagent (Invitrogen)………………………………….19 7. Phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma)……19 8. Chloroform:isoamyl alcohol (24:1) (Sigma)………………….19 I. Pimers.19 J. RNA probe (labeled with DIG-UTP)…………………………………19 Methods A. plasmid DNA extraction…………………………………………….20 B. Microinjection of zebrafish embryos……………………………….20 C. Virus challenge………………………………………………………20 D. Liposome oral administration……………………………………….21 E. HcRed immunohistochemical staining…………………………….21 F. Tissue distribution and RNA extraction…………………………….21 G. Reverse transcription-polymerase chain reaction (RT-PCR).……….22 H. Whole-mount In Situ Hybridization…………………………………22 Result A. dsRNA design and Construction of shRNAs expression plasmid….24 B. In situ hybridization analysis of the expression of siRNA in the zebrafish………………………………………………………….…25 C. Selection of siRNA expression stable line and virus challenge in F1 generation……………………………………………………….25 D. Characterisation of the liposome and lipoplex formulations.……….25 E. Detection of HcRed reporter RNA in several tissues of lipoplex-feeding zebrafish by RT-PCR………………………….26 F. Immunohistochemical staining………………………………….….26 G. The time - course analysis of lipoplex-feeding fishs……………….27 Discussion.28 References.31 Index of Tables Table 1. Anti-NNV siRNAs target selection……………………………40 Table 2. RPS (relative percent survival)……………………………….41 Table 3. Liposome deliver efficiency test……………………………….42 Table 4. Liposome 2 deliver efficiency test…………………………….43 Index of Figures Figure 1. SiRNA inhibited NNV replication in vitro experiment …….44 Figure 2. Vector-based siRNA expression construct……………….45 Figure 3. In situ hybridization analysis of the expression of siRNA in the zebrafish……………………………………………………….46 Figure 4. Transfecting siRNA expression vector into eggs of fish by microinjection………………………………………………….47 Figure 5. The result of RT-PCR of F1 generation of siRNA injected fishes…………………………………………………………….48 Figure 6. Liposome-feeding fishes tissue distribution and RT-PCR….49 Figure 7. Immunohistochemistry of liposome- feeding fish………….50 Figure 8. Time course of liposome delivery system in zebrafish…….51 Figure 9. Time course analysis of liposome-feeding fish by RT-PCR.52 Index of Appendix Appendix I. Light microscopy of tissue sections from turbot. Sections from a turbot 16 days post-hatching immunolabelled for nodavirus (SJNNV-antiserum)………………………………………………53 Appendix II. The structure of Nodavirus (Flock House Virus)……….54 Appendix III. Full-length nucleotide and deduced amino acid sequences of GGNNV RNA1……………………………………………….55 Appendix IV. Full-length nucleotide and deduced amino acid sequences of GGNNV RNA2……………………………………………….56 Appendix V. A model for the mechanism of RNAi…………………….57
author2 吳金洌
臺灣大學:漁業科學研究所
format Text
author 蔡翰甽
Tsai, Han-Chuan
author_facet 蔡翰甽
Tsai, Han-Chuan
author_sort 蔡翰甽
title 在斑馬魚中利用小片段核醣核酸干擾疫苗抑制神經壞死病毒
title_short 在斑馬魚中利用小片段核醣核酸干擾疫苗抑制神經壞死病毒
title_full 在斑馬魚中利用小片段核醣核酸干擾疫苗抑制神經壞死病毒
title_fullStr 在斑馬魚中利用小片段核醣核酸干擾疫苗抑制神經壞死病毒
title_full_unstemmed 在斑馬魚中利用小片段核醣核酸干擾疫苗抑制神經壞死病毒
title_sort 在斑馬魚中利用小片段核醣核酸干擾疫苗抑制神經壞死病毒
publishDate 2006
url http://ntur.lib.ntu.edu.tw/handle/246246/59315
http://ntur.lib.ntu.edu.tw/bitstream/246246/59315/1/ntu-95-R93b45012-1.pdf
long_lat ENVELOPE(16.451,16.451,68.922,68.922)
geographic Nona
geographic_facet Nona
genre Turbot
genre_facet Turbot
op_relation References Azad, I. S., Shankar, K. M., Mohan, C. V., and Kalita, B. (2000). Uptake and processing of biofilm and free-cell vaccines of Aeromonas hydrophila in indian major carps and common carp following oral vaccination--antigen localization by a monoclonal antibody. Dis Aquat Organ 43, 103-8. Ball, L. A., and Johnson, K. L. (1999). Reverse genetics of nodaviruses. Adv Virus Res 53, 229-44. Bernstein, E., Denli, A. M., and Hannon, G. J. (2001). The rest is silence. Rna 7, 1509-21. Bovo, G., Nishizawa, T., Maltese, C., Borghesan, F., Mutinelli, F., Montesi, F., and De Mas, S. (1999). Viral encephalopathy and retinopathy of farmed marine fish species in Italy. Virus Res 63, 143-6. Breuil, G., Bonami, J. R., Pepin, J. F., and Pichot, Y. (1991). Viral infection (picorna-like virus) associated with mass mortalities in hatchery-reared sea-bass (Dicentrarchus labrax ) larvae and juveniles. Aquacult. 97, 109-116. Caplen, N. J., Fleenor, J., Fire, A., and Morgan, R. A. (2000). dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95-105. Carmichael, G. G. (2002). Medicine: silencing viruses with RNA. Nature 418, 379-80. Chi, S. C., Hu, W. W., and Lo, B. J. (1999). Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coioides (Hamilton): a cell line susceptible to grouper nervous necrosis virus (GNNV). Journal of Fish Diseases 22, 173-182. Chiu, Y. L., and Rana, T. M. (2003). siRNA function in RNAi: a chemical modification analysis. Rna 9, 1034-48. Coburn, G. A., and Cullen, B. R. (2002). Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 76, 9225-31. Davidson, G. A., Ellis, A. E., and Secombes, C. J. (1993). Route of immunization influences the generation of antibody secreting cells in the gut of rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol 17, 373-6. Delsert, C., Morin, N., and Comps, M. (1997). A fish encephalitis virus that differs from other nodaviruses by its capsid protein processing. Arch Virol 142, 2359-71. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001a). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15, 188-200. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. (2001b). Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J 20, 6877-88. Felgner, P. L., Barenholz, Y., Behr, J. P., Cheng, S. H., Cullis, P., Huang, L., Jessee, J. A., Seymour, L., Szoka, F., Thierry, A. R., Wagner, E., and Wu, G. (1997). Nomenclature for synthetic gene delivery systems. Hum Gene Ther 8, 511-2. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-11. Fisher, A. J., and Johnson, J. E. (1993). Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature 361, 176-9. Fjose, A., Ellingsen, S., Wargelius, A., and Seo, H. C. (2001). RNA interference: mechanisms and applications. Biotechnol Annu Rev 7, 31-57. Frerichs, G. N., Rodger, H. D., and Peric, Z. (1996). Cell culture isolation of piscine neuropathy nodavirus from juvenile sea bass, Dicentrarchus labrax. J Gen Virol 77 ( Pt 9), 2067-71. Gao, X., and Huang, L. (1995). Cationic liposome-mediated gene transfer. Gene Ther 2, 710-22. Gitlin, L., Karelsky, S., and Andino, R. (2002). Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418, 430-4. Gregoriadis, G. (1990). Immunological adjuvants: a role for liposomes. Immunol Today 11, 89-97. Grotmol, S., Bergh, O., and Totland, G. K. (1999). Transmission of viral encephalopathy and retinopathy (VER) to yolk-sac larvae of the Atlantic halibut Hippoglossus hippoglossus: occurrence of nodavirus in various organs and a possible route of infection. Dis Aquat Organ 36, 95-106. Guo, Y. X., Wei, T., Dallmann, K., and Kwang, J. (2003). Induction of caspase-dependent apoptosis by betanodaviruses GGNNV and demonstration of protein [alpha] as an apoptosis inducer. Virology 308, 74-82. Hall, A. H., and Alexander, K. A. (2003). RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol 77, 6066-9. Hannon, G. J. (2002). RNA interference. Nature 418, 244-51. Iwamoto, T., Mori, K., Arimoto, M., and Nakai, T. (1999). High permissivity of the fish cell line SSN-1 for piscine nodaviruses. Dis Aquat Organ 39, 37-47. Jia, Q., and Sun, R. (2003). Inhibition of gammaherpesvirus replication by RNA interference. J Virol 77, 3301-6. Jiang, M., and Milner, J. (2002). Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21, 6041-8. Johansen, R., Sommerset, I., Torud, B., Korsnes, K., Hjortaas, M. J., Nilsen, F., Nerland, A. H., and Dannevig, B. H. (2004). Characterization of nodavirus and viral encephalopathy and retinopathy in farmed turbot, Scophthalmus maximus (L.). J Fish Dis 27, 591-601. Layzer, J. M., McCaffrey, A. P., Tanner, A. K., Huang, Z., Kay, M. A., and Sullenger, B. A. (2004). In vivo activity of nuclease-resistant siRNAs. Rna 10, 766-71. Le Breton, A., Grisez, L., Sweetman, J., and Ollevier, F. (1997). Viral nervous necrosis (VNN) associated with mass mortalities in cage-reared sea bass,Dicentrarchus labrax (L.). Journal of Fish Diseases 20, 145-151. Lee, N. S., Dohjima, T., Bauer, G., Li, H., Li, M. J., Ehsani, A., Salvaterra, P., and Rossi, J. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20, 500-5. Li, H., Li, W. X., and Ding, S. W. (2002). Induction and suppression of RNA silencing by an animal virus. Science 296, 1319-21. Li, Y. X., Farrell, M. J., Liu, R., Mohanty, N., and Kirby, M. L. (2000). Double-stranded RNA injection produces null phenotypes in zebrafish. Dev Biol 217, 394-405. Liu, W. Y., Wang, Y., Sun, Y. H., Wang, Y., Wang, Y. P., Chen, S. P., and Zhu, Z. Y. (2005). Efficient RNA interference in zebrafish embryos using siRNA synthesized with SP6 RNA polymerase. Dev Growth Differ 47, 323-31. Mahato, R. I., Rolland, A., and Tomlinson, E. (1997). Cationic lipid-based gene delivery systems: pharmaceutical perspectives. Pharm Res 14, 853-9. McCaffrey, A. P., Nakai, H., Pandey, K., Huang, Z., Salazar, F. H., Xu, H., Wieland, S. F., Marion, P. L., and Kay, M. A. (2003). Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 21, 639-44. McManus, M. T., and Sharp, P. A. (2002). Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3, 737-47. Means, J. C., Muro, I., and Clem, R. J. (2003). Silencing of the baculovirus Op-iap3 gene by RNA interference reveals that it is required for prevention of apoptosis during Orgyia pseudotsugata M nucleopolyhedrovirus infection of Ld652Y cells. J Virol 77, 4481-8. Minks, M. A., West, D. K., Benvin, S., Greene, J. J., Ts'o, P. O., and Baglioni, C. (1980). Activation of 2',5'-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells by 2'-O-methylated poly (inosinic acid) . poly(cytidylic acid), Correlations with interferon-inducing activity. J Biol Chem 255, 6403-7. Mori, K., Nakai, T., Muroga, K., Arimoto, M., Mushiake, K., and Furusawa, I. (1992). Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187, 368-71. Morrissey, D. V., Blanchard, K., Shaw, L., Jensen, K., Lockridge, J. A., Dickinson, B., McSwiggen, J. A., Vargeese, C., Bowman, K., Shaffer, C. S., Polisky, B. A., and Zinnen, S. (2005). Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41, 1349-56. Munday, B. L., Kwang, J., and Moody, N. (2002). Betanodavirus infections of teleost fish: a review. Journal of Fish Diseases 25, 127-142. Nishizawa, T., Furuhashi, M., Nagai, T., Nakai, T., and Muroga, K. (1997). Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Appl Environ Microbiol 63, 1633-6. Nishizawa, T., Mori, K., Furuhashi, M., Nakai, T., Furusawa, I., and Muroga, K. (1995). Comparison of the coat protein genes of five fish nodaviruses, the causative agents of viral nervous necrosis in marine fish. J Gen Virol 76 ( Pt 7), 1563-9. Novina, C. D., Murray, M. F., Dykxhoorn, D. M., Beresford, P. J., Riess, J., Lee, S. K., Collman, R. G., Lieberman, J., Shankar, P., and Sharp, P. A. (2002). siRNA-directed inhibition of HIV-1 infection. Nat Med 8, 681-6. Quentel, C., and Vigneulle, M. (1997). Antigen uptake and immune responses after oral vaccination. Dev Biol Stand 90, 69-78. Rombout, J. H., Lamers, C. H., Helfrich, M. H., Dekker, A., and Taverne-Thiele, J. J. (1985). Uptake and transport of intact macromolecules in the intestinal epithelium of carp (Cyprinus carpio L.) and the possible immunological implications. Cell Tissue Res 239, 519-30. Rothermel, A., Volpert, K., Schlichting, R., Huhn, J., Stotz-Reimers, M., Robitzki, A. A., and Layer, P. G. (2004). Spatial and temporal expression patterns of GDNF family receptor alpha4 in the developing chicken retina. Gene Expr Patterns 4, 59-63. Schneemann, A., Reddy, V., and Johnson, J. E. (1998). The structure and function of nodavirus particles: a paradigm for understanding chemical biology. Adv Virus Res 50, 381-446. Seo, M. Y., Abrignani, S., Houghton, M., and Han, J. H. (2003). Small interfering RNA-mediated inhibition of hepatitis C virus replication in the human hepatoma cell line Huh-7. J Virol 77, 810-2. Shlomai, A., and Shaul, Y. (2003). Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology 37, 764-70. Surabhi, R. M., and Gaynor, R. B. (2002). RNA interference directed against viral and cellular targets inhibits human immunodeficiency Virus Type 1 replication. J Virol 76, 12963-73. Tan, C., Huang, B., Chang, S. F., Ngoh, G. H., Munday, B., Chen, S. C., and Kwang, J. (2001). Determination of the complete nucleotide sequences of RNA1 and RNA2 from greasy grouper (Epinephelus tauvina) nervous necrosis virus, Singapore strain. J Gen Virol 82, 647-53. Tian, B., and Mathews, M. B. (2001). Functional characterization of and cooperation between the double-stranded RNA-binding motifs of the protein kinase PKR. J Biol Chem 276, 9936-44. Wargelius, A., Ellingsen, S., and Fjose, A. (1999). Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem Biophys Res Commun 263, 156-61. Wiebusch, L., Truss, M., and Hagemeier, C. (2004). Inhibition of human cytomegalovirus replication by small interfering RNAs. J Gen Virol 85, 179-84. Wong, G., Kaattari, S. L., and Christensen, J. M. (1992). Effectiveness of an oral enteric coated vibrio vaccine for use in salmonid fish. Immunol Invest 21, 353-64. Yelina, N. E., Savenkov, E. I., Solovyev, A. G., Morozov, S. Y., and Valkonen, J. P. (2002). Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J Virol 76, 12981-91. Yoshikoshi, K., and Inoue, K. (1990). Viral Nervous Necrosis in Hatchery-Reared Larvae and Juveniles of Japanese Parrotfish, Oplegnathus-Fasciatus (Temminck and Schlegel). Journal of Fish Diseases 13, 69-77. Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33.
_version_ 1766230802905956352
spelling ftntaiwanuniv:oai:140.112.114.62:246246/59315 2023-05-15T18:41:18+02:00 在斑馬魚中利用小片段核醣核酸干擾疫苗抑制神經壞死病毒 siRNA vaccine against nerve necrosis virus in zebrafish 蔡翰甽 Tsai, Han-Chuan 吳金洌 臺灣大學:漁業科學研究所 2006 2272769 bytes application/pdf http://ntur.lib.ntu.edu.tw/handle/246246/59315 http://ntur.lib.ntu.edu.tw/bitstream/246246/59315/1/ntu-95-R93b45012-1.pdf en-US en_US eng References Azad, I. S., Shankar, K. M., Mohan, C. V., and Kalita, B. (2000). Uptake and processing of biofilm and free-cell vaccines of Aeromonas hydrophila in indian major carps and common carp following oral vaccination--antigen localization by a monoclonal antibody. Dis Aquat Organ 43, 103-8. Ball, L. A., and Johnson, K. L. (1999). Reverse genetics of nodaviruses. Adv Virus Res 53, 229-44. Bernstein, E., Denli, A. M., and Hannon, G. J. (2001). The rest is silence. Rna 7, 1509-21. Bovo, G., Nishizawa, T., Maltese, C., Borghesan, F., Mutinelli, F., Montesi, F., and De Mas, S. (1999). Viral encephalopathy and retinopathy of farmed marine fish species in Italy. Virus Res 63, 143-6. Breuil, G., Bonami, J. R., Pepin, J. F., and Pichot, Y. (1991). Viral infection (picorna-like virus) associated with mass mortalities in hatchery-reared sea-bass (Dicentrarchus labrax ) larvae and juveniles. Aquacult. 97, 109-116. Caplen, N. J., Fleenor, J., Fire, A., and Morgan, R. A. (2000). dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95-105. Carmichael, G. G. (2002). Medicine: silencing viruses with RNA. Nature 418, 379-80. Chi, S. C., Hu, W. W., and Lo, B. J. (1999). Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coioides (Hamilton): a cell line susceptible to grouper nervous necrosis virus (GNNV). Journal of Fish Diseases 22, 173-182. Chiu, Y. L., and Rana, T. M. (2003). siRNA function in RNAi: a chemical modification analysis. Rna 9, 1034-48. Coburn, G. A., and Cullen, B. R. (2002). Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 76, 9225-31. Davidson, G. A., Ellis, A. E., and Secombes, C. J. (1993). Route of immunization influences the generation of antibody secreting cells in the gut of rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol 17, 373-6. Delsert, C., Morin, N., and Comps, M. (1997). A fish encephalitis virus that differs from other nodaviruses by its capsid protein processing. Arch Virol 142, 2359-71. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001a). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15, 188-200. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. (2001b). Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J 20, 6877-88. Felgner, P. L., Barenholz, Y., Behr, J. P., Cheng, S. H., Cullis, P., Huang, L., Jessee, J. A., Seymour, L., Szoka, F., Thierry, A. R., Wagner, E., and Wu, G. (1997). Nomenclature for synthetic gene delivery systems. Hum Gene Ther 8, 511-2. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-11. Fisher, A. J., and Johnson, J. E. (1993). Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature 361, 176-9. Fjose, A., Ellingsen, S., Wargelius, A., and Seo, H. C. (2001). RNA interference: mechanisms and applications. Biotechnol Annu Rev 7, 31-57. Frerichs, G. N., Rodger, H. D., and Peric, Z. (1996). Cell culture isolation of piscine neuropathy nodavirus from juvenile sea bass, Dicentrarchus labrax. J Gen Virol 77 ( Pt 9), 2067-71. Gao, X., and Huang, L. (1995). Cationic liposome-mediated gene transfer. Gene Ther 2, 710-22. Gitlin, L., Karelsky, S., and Andino, R. (2002). Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418, 430-4. Gregoriadis, G. (1990). Immunological adjuvants: a role for liposomes. Immunol Today 11, 89-97. Grotmol, S., Bergh, O., and Totland, G. K. (1999). Transmission of viral encephalopathy and retinopathy (VER) to yolk-sac larvae of the Atlantic halibut Hippoglossus hippoglossus: occurrence of nodavirus in various organs and a possible route of infection. Dis Aquat Organ 36, 95-106. Guo, Y. X., Wei, T., Dallmann, K., and Kwang, J. (2003). Induction of caspase-dependent apoptosis by betanodaviruses GGNNV and demonstration of protein [alpha] as an apoptosis inducer. Virology 308, 74-82. Hall, A. H., and Alexander, K. A. (2003). RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol 77, 6066-9. Hannon, G. J. (2002). RNA interference. Nature 418, 244-51. Iwamoto, T., Mori, K., Arimoto, M., and Nakai, T. (1999). High permissivity of the fish cell line SSN-1 for piscine nodaviruses. Dis Aquat Organ 39, 37-47. Jia, Q., and Sun, R. (2003). Inhibition of gammaherpesvirus replication by RNA interference. J Virol 77, 3301-6. Jiang, M., and Milner, J. (2002). Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21, 6041-8. Johansen, R., Sommerset, I., Torud, B., Korsnes, K., Hjortaas, M. J., Nilsen, F., Nerland, A. H., and Dannevig, B. H. (2004). Characterization of nodavirus and viral encephalopathy and retinopathy in farmed turbot, Scophthalmus maximus (L.). J Fish Dis 27, 591-601. Layzer, J. M., McCaffrey, A. P., Tanner, A. K., Huang, Z., Kay, M. A., and Sullenger, B. A. (2004). In vivo activity of nuclease-resistant siRNAs. Rna 10, 766-71. Le Breton, A., Grisez, L., Sweetman, J., and Ollevier, F. (1997). Viral nervous necrosis (VNN) associated with mass mortalities in cage-reared sea bass,Dicentrarchus labrax (L.). Journal of Fish Diseases 20, 145-151. Lee, N. S., Dohjima, T., Bauer, G., Li, H., Li, M. J., Ehsani, A., Salvaterra, P., and Rossi, J. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20, 500-5. Li, H., Li, W. X., and Ding, S. W. (2002). Induction and suppression of RNA silencing by an animal virus. Science 296, 1319-21. Li, Y. X., Farrell, M. J., Liu, R., Mohanty, N., and Kirby, M. L. (2000). Double-stranded RNA injection produces null phenotypes in zebrafish. Dev Biol 217, 394-405. Liu, W. Y., Wang, Y., Sun, Y. H., Wang, Y., Wang, Y. P., Chen, S. P., and Zhu, Z. Y. (2005). Efficient RNA interference in zebrafish embryos using siRNA synthesized with SP6 RNA polymerase. Dev Growth Differ 47, 323-31. Mahato, R. I., Rolland, A., and Tomlinson, E. (1997). Cationic lipid-based gene delivery systems: pharmaceutical perspectives. Pharm Res 14, 853-9. McCaffrey, A. P., Nakai, H., Pandey, K., Huang, Z., Salazar, F. H., Xu, H., Wieland, S. F., Marion, P. L., and Kay, M. A. (2003). Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 21, 639-44. McManus, M. T., and Sharp, P. A. (2002). Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3, 737-47. Means, J. C., Muro, I., and Clem, R. J. (2003). Silencing of the baculovirus Op-iap3 gene by RNA interference reveals that it is required for prevention of apoptosis during Orgyia pseudotsugata M nucleopolyhedrovirus infection of Ld652Y cells. J Virol 77, 4481-8. Minks, M. A., West, D. K., Benvin, S., Greene, J. J., Ts'o, P. O., and Baglioni, C. (1980). Activation of 2',5'-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells by 2'-O-methylated poly (inosinic acid) . poly(cytidylic acid), Correlations with interferon-inducing activity. J Biol Chem 255, 6403-7. Mori, K., Nakai, T., Muroga, K., Arimoto, M., Mushiake, K., and Furusawa, I. (1992). Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187, 368-71. Morrissey, D. V., Blanchard, K., Shaw, L., Jensen, K., Lockridge, J. A., Dickinson, B., McSwiggen, J. A., Vargeese, C., Bowman, K., Shaffer, C. S., Polisky, B. A., and Zinnen, S. (2005). Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41, 1349-56. Munday, B. L., Kwang, J., and Moody, N. (2002). Betanodavirus infections of teleost fish: a review. Journal of Fish Diseases 25, 127-142. Nishizawa, T., Furuhashi, M., Nagai, T., Nakai, T., and Muroga, K. (1997). Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Appl Environ Microbiol 63, 1633-6. Nishizawa, T., Mori, K., Furuhashi, M., Nakai, T., Furusawa, I., and Muroga, K. (1995). Comparison of the coat protein genes of five fish nodaviruses, the causative agents of viral nervous necrosis in marine fish. J Gen Virol 76 ( Pt 7), 1563-9. Novina, C. D., Murray, M. F., Dykxhoorn, D. M., Beresford, P. J., Riess, J., Lee, S. K., Collman, R. G., Lieberman, J., Shankar, P., and Sharp, P. A. (2002). siRNA-directed inhibition of HIV-1 infection. Nat Med 8, 681-6. Quentel, C., and Vigneulle, M. (1997). Antigen uptake and immune responses after oral vaccination. Dev Biol Stand 90, 69-78. Rombout, J. H., Lamers, C. H., Helfrich, M. H., Dekker, A., and Taverne-Thiele, J. J. (1985). Uptake and transport of intact macromolecules in the intestinal epithelium of carp (Cyprinus carpio L.) and the possible immunological implications. Cell Tissue Res 239, 519-30. Rothermel, A., Volpert, K., Schlichting, R., Huhn, J., Stotz-Reimers, M., Robitzki, A. A., and Layer, P. G. (2004). Spatial and temporal expression patterns of GDNF family receptor alpha4 in the developing chicken retina. Gene Expr Patterns 4, 59-63. Schneemann, A., Reddy, V., and Johnson, J. E. (1998). The structure and function of nodavirus particles: a paradigm for understanding chemical biology. Adv Virus Res 50, 381-446. Seo, M. Y., Abrignani, S., Houghton, M., and Han, J. H. (2003). Small interfering RNA-mediated inhibition of hepatitis C virus replication in the human hepatoma cell line Huh-7. J Virol 77, 810-2. Shlomai, A., and Shaul, Y. (2003). Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology 37, 764-70. Surabhi, R. M., and Gaynor, R. B. (2002). RNA interference directed against viral and cellular targets inhibits human immunodeficiency Virus Type 1 replication. J Virol 76, 12963-73. Tan, C., Huang, B., Chang, S. F., Ngoh, G. H., Munday, B., Chen, S. C., and Kwang, J. (2001). Determination of the complete nucleotide sequences of RNA1 and RNA2 from greasy grouper (Epinephelus tauvina) nervous necrosis virus, Singapore strain. J Gen Virol 82, 647-53. Tian, B., and Mathews, M. B. (2001). Functional characterization of and cooperation between the double-stranded RNA-binding motifs of the protein kinase PKR. J Biol Chem 276, 9936-44. Wargelius, A., Ellingsen, S., and Fjose, A. (1999). Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem Biophys Res Commun 263, 156-61. Wiebusch, L., Truss, M., and Hagemeier, C. (2004). Inhibition of human cytomegalovirus replication by small interfering RNAs. J Gen Virol 85, 179-84. Wong, G., Kaattari, S. L., and Christensen, J. M. (1992). Effectiveness of an oral enteric coated vibrio vaccine for use in salmonid fish. Immunol Invest 21, 353-64. Yelina, N. E., Savenkov, E. I., Solovyev, A. G., Morozov, S. Y., and Valkonen, J. P. (2002). Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J Virol 76, 12981-91. Yoshikoshi, K., and Inoue, K. (1990). Viral Nervous Necrosis in Hatchery-Reared Larvae and Juveniles of Japanese Parrotfish, Oplegnathus-Fasciatus (Temminck and Schlegel). Journal of Fish Diseases 13, 69-77. Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33. 神經壞死病毒 核醣核酸干擾 斑馬魚 nerve necrosis virus siRNA zebrafish Text 2006 ftntaiwanuniv 2016-02-20T00:11:56Z 神經壞死病毒(NNV)在水產養殖上為一重要的魚類病毒,尤其在石斑魚的養殖上更是造成嚴重的經濟損失。NNV屬於結病毒科(Nodaviridae)的betanodavirus屬,神經壞死病毒的病毒顆粒大小在25∼30微米左右,無封套膜、二十面體,屬於核糖核酸病毒,具有兩段單股的正股RNA,稱為RNA1與RNA2,RNA1所產生的蛋白質為RNA 聚合酶;而RNA2所產生的蛋白質為鞘蛋白(capsid protein),主要是組成病毒外殼。石斑魚從卵孵化到吋苗的這段期間內,遭受NNV病毒感染的機率極大,被感染的魚苗會有不正常如旋轉般的游動情況,稱為飛旋症;感染後並會引起魚的神經壞死(viral nervous necrosis, VNN),腦脊髓炎(encephalomyelitis)和液泡形成、腦病和視網膜病變(vacuolating encephalopathy and retinopathy, VER),並造成大量的死亡,死亡率甚至會高達90~100%也是近年來在石斑魚養殖上所面臨最嚴重的病毒性疾病。 核糖核酸干擾(RNAi)技術在近幾年來被詳細的探討與應用,對於抑制基因的表現上被視為一重要的工具。本實驗我們預計利用核糖核酸干擾技術發展抗NNV病毒的水產疫苗,而基於疫苗作用的持續時間與成本上的考量,我們將嘗試以DNA載體為基礎的siRNA來發展疫苗。經由建立的siRNA穩定表現魚體的品系,做病毒感染的結果顯示,比較控制組,其F1子代能擁有較高的存活比率。原位雜交的結果更是顯示siRNA的表現載體,能在魚體內成功的產生siRNA的片段,這將讓我們更具信心將此技術應用於發展石斑魚抗NNV病毒的疫苗上。 而本實驗另一項重要的目的便是探討利用微脂粒(nano-liposome)作為傳遞系統來發展疫苗的可行性。我們利用六種不同配方之微酯粒(nano-liposome)包裹能表現紅螢光的siRNA之構築體,混合魚類飼料(孵化之豐年蝦),經由投餵方式讓一個月大之斑馬魚(zebrafish)食入,接著觀察其在魚體內表現之情形。確定其食入後16小時,將魚體置於螢光顯微鏡下觀察,發現斑馬魚腹部有很強之紅螢光表現。 接著對魚體做各個組織分離,抽取RNA後做RT-PCR,結果顯示,腦,心臟,眼睛,腸,甚至肌肉都能偵測到螢光基因的表現,而免疫組織染色也得到類似的結果。表示利用微酯粒包覆混合飼料餵食法,能夠成功的將基因帶入生物體內,進而使其能有效的在體內表現。這樣的結果我們預測利用如此的傳遞系統對未來應用於腸道基因轉殖或是疫苗的製造將有其發展的潛力。 Viral infections have been increasingly reported in cultured marine fish. Among these infections, viral encephalopathy and retinopathy (VER), caused by betanodaviruses (piscine nodavirus), is one of the most devastating, occurring in a variety of marine fish all over the world. Disease control would evolve an important issue for the whole world aquatic industry. Histological examination of tissues from the central nervous system and the retina often reveals areas of conspicuous tissue vacuolation and necrosis. Their genome consists of two molecules of messenger sense RNA. RNA1 is approximately 3.1 kb in size and carries the gene that encodes for an RNA-dependent RNA polymerase referred to as protein A; RNA2 is approximately 1.4 kb in size and contains the open reading frame that encodes the capsid protein. Short interfering RNAs (siRNAs) have proved to be a useful tool in studying gene function. Recently, small interfering RNAs (siRNAs) have been used for gene knockdown in mammalian cultured cells, but their utility in fish has remained unexplored. In this thesis study, we want to development anti-fish virus by using RNAi technology, and nano-liposome was the delivery system that we used in this experiment. We constructed 4 sets of siRNA vectors containing NNV's RNA2 gene in the position at 93, 585, 730 and 1024 nt. We also constructed the plasmids with HcRed gene regarding as siRNA detection marker. My experiment is separated into two parts: one is using siRNA expression vector inject zebrafish to single out stable line, and the F2 generation was challenge by NNV. There is higher survival rate compared to control. In the F1 generation, we could detect fluorescence marker gene in expression vector by RT-PCR. The other part:we used nano-liposome as DNA deliver tool with oral administration in zebrafish. Six different formulations of liposome were examined for the fluorescent marker gene of siRNA expression vector . The zebrafish was fed with nona-liposome, 4 h to 12 h after feeding, and the samples were collected at every interval of 2 h of this period. At 16 h after liposome feeding, there was strong fluorescence expressing in several organs including heart, eye and intestine etc. The result of in situ hybridization demonstrated vector-mediated siRNA could be expressed in zebrafishes. Therefore, vector-based siRNA delivered by nano-liposome has the potential to be the vaccine that against aquatic virus.in aquaculture. Content English abstract……………………………………………………….i Chinese abstract……………………………………………………….iii Introduction…………………………………………………………1 Materials .……………………………………………8 A. Biotic materials…………………………………………………….8 1. Zebrafish (Danio rerio)……………………………………….8 2. Virus……………………………………………………………8 3. Competent cell………………………………………………….9 4. Plasmids……………………………………………………….9 5. The formulation of lipoplex…………………………………….9 B. Equipments and instruments……………………………………….10 1. High speed centrifuge………………………………………….10 2. Centrifuge t…………………………………………………….10 3. Electrophoresis equipment…………………………………….10 4. PCR system………………………………………………….….10 5. Spectrophotometer………………………………………….10 6. Fluorescent microscope…………………………………………10 7. Glassmicroelectrode puller…………………………………….10 8. Microinjector……………………………………………………10 9. Microgrinder…………………………………………………….10 10. Polytron…………………………………………………………10 11. pH meter……………………………………………………….10 12. CO2 water jacketed incubator………………………………….10 13. Vortex Mixer…………………………………………………….10 C. Reaction reagents………………………………………………….10 1. Bacterial medium……………………………………………….11 2. Enzymes.12 3. Molecular weight marker……………………………………….12 D. Biotic Reaction Reagent Kits……………………………………….13 1. QIAquick® Gel Extraction Kit (QIAGEN)…………………….13 2. PureLinkTM HiPure Plasmid DNA Purification Kits (Invitrogen).13 3. SuperScriptTM III First-Strand Synthesis System for RT-PCR (Invitrogen)………………………………………………………13 4. RNA-spinTM Total RNA Extraction Kit 【For cell/tissue】…….13 5. Platinum® Taq DNA polymerase (Invitrogen)………………….13 6. SuperScriptTM III One-Step RT-PCR System with Platinum® Taq DNA polymerase (Invitrogen)………………………………….13 7. PureLinkTM HiPure Plasmid Maxiprep Kits (Invitrogen)……….13 E. Reaction solution and buffer…………………………………………13 1. DNA electrophoresis and buffers……………………………….13 2. RNA electrophoresis and buffers……………………………….14 3. Plasmid boiling prep. - Extraction buffer ( Lysis buffer )……….14 4. PEG solution for competent cell (Calcium Chloride solution)….15 5. In Situ Hybridization buffers…………………………………….15 F. Medium/Buffer for Cell Culture…………………………………….17 Cell culture medium……………………………………………….17 G. Cell culture Drugs……………………………………………………28 H. Chemical Drugs …………………………………………………….19 1. Tris-base, glacial acetic acid, NaCl, Glucose, potassium acetate, EDTA, HCl, NaOH, Chloroform, Formamide, Formaldehyde, Ethidium bromid (EtBr), Ampicillin, ammonium persulfate, Methanol. (Merk)……………………………………………….19 2. Saturated phenol for DNA (AMRESCO)……………………….19 3. Bacto-agar, yeast extract, Bacto-trypton (DIFCO)……………….19 4. SeaKem® LE agarose (CAMBRREX)………………………….19 5. SeaKem® GTG agarose (CAMBRREX)…………………………19 6. TRIZOL® reagent (Invitrogen)………………………………….19 7. Phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma)……19 8. Chloroform:isoamyl alcohol (24:1) (Sigma)………………….19 I. Pimers.19 J. RNA probe (labeled with DIG-UTP)…………………………………19 Methods A. plasmid DNA extraction…………………………………………….20 B. Microinjection of zebrafish embryos……………………………….20 C. Virus challenge………………………………………………………20 D. Liposome oral administration……………………………………….21 E. HcRed immunohistochemical staining…………………………….21 F. Tissue distribution and RNA extraction…………………………….21 G. Reverse transcription-polymerase chain reaction (RT-PCR).……….22 H. Whole-mount In Situ Hybridization…………………………………22 Result A. dsRNA design and Construction of shRNAs expression plasmid….24 B. In situ hybridization analysis of the expression of siRNA in the zebrafish………………………………………………………….…25 C. Selection of siRNA expression stable line and virus challenge in F1 generation……………………………………………………….25 D. Characterisation of the liposome and lipoplex formulations.……….25 E. Detection of HcRed reporter RNA in several tissues of lipoplex-feeding zebrafish by RT-PCR………………………….26 F. Immunohistochemical staining………………………………….….26 G. The time - course analysis of lipoplex-feeding fishs……………….27 Discussion.28 References.31 Index of Tables Table 1. Anti-NNV siRNAs target selection……………………………40 Table 2. RPS (relative percent survival)……………………………….41 Table 3. Liposome deliver efficiency test……………………………….42 Table 4. Liposome 2 deliver efficiency test…………………………….43 Index of Figures Figure 1. SiRNA inhibited NNV replication in vitro experiment …….44 Figure 2. Vector-based siRNA expression construct……………….45 Figure 3. In situ hybridization analysis of the expression of siRNA in the zebrafish……………………………………………………….46 Figure 4. Transfecting siRNA expression vector into eggs of fish by microinjection………………………………………………….47 Figure 5. The result of RT-PCR of F1 generation of siRNA injected fishes…………………………………………………………….48 Figure 6. Liposome-feeding fishes tissue distribution and RT-PCR….49 Figure 7. Immunohistochemistry of liposome- feeding fish………….50 Figure 8. Time course of liposome delivery system in zebrafish…….51 Figure 9. Time course analysis of liposome-feeding fish by RT-PCR.52 Index of Appendix Appendix I. Light microscopy of tissue sections from turbot. Sections from a turbot 16 days post-hatching immunolabelled for nodavirus (SJNNV-antiserum)………………………………………………53 Appendix II. The structure of Nodavirus (Flock House Virus)……….54 Appendix III. Full-length nucleotide and deduced amino acid sequences of GGNNV RNA1……………………………………………….55 Appendix IV. Full-length nucleotide and deduced amino acid sequences of GGNNV RNA2……………………………………………….56 Appendix V. A model for the mechanism of RNAi…………………….57 Text Turbot National Taiwan University Institutional Repository (NTUR) Nona ENVELOPE(16.451,16.451,68.922,68.922)