嘉義祝山地區砂質與壤質淋澱土土壤之特性與化育作用

淋澱土通常生成於冷涼潮濕的氣候、針葉林植生與砂質地母質。阿里山祝山地區位於台灣中部次亞高山地區,海拔高度約2,300公尺,年雨量3,910公釐,氣候終年涼爽濕潤、全年幾乎無明顯乾燥季節,此土壤溫度境況為溫和與土壤水分境況為濕潤。本研究區之植被為紅檜(Chamaecyparis formosensis)及鐵杉(Tsuga chinensis)佔優勢,並有少數華山松(Pinus armandii)或雲葉(Trochodendron aralioides)相伴而生,人工柳杉林,亦為本區主要林相。地被植物主要以玉山箭竹(Yushania niitakayanensis)佔絕對優勢與芒草(Miscant...

Full description

Bibliographic Details
Main Authors: 邱春媚, Chiu, Chun-Mei
Other Authors: 陳尊賢, 臺灣大學:農業化學研究所
Format: Thesis
Language:Chinese
English
Published: 2004
Subjects:
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/58465
http://ntur.lib.ntu.edu.tw/bitstream/246246/58465/1/ntu-93-R91623410-1.pdf
id ftntaiwanuniv:oai:140.112.114.62:246246/58465
record_format openpolar
institution Open Polar
collection National Taiwan University Institutional Repository (NTUR)
op_collection_id ftntaiwanuniv
language Chinese
English
topic 淋澱土
淋澱化作用
土壤微形態構造
黏土礦物
風化序列
化育作用
Spodosols
podzolization
clay illuviation
soil micromorphological characteristics
spellingShingle 淋澱土
淋澱化作用
土壤微形態構造
黏土礦物
風化序列
化育作用
Spodosols
podzolization
clay illuviation
soil micromorphological characteristics
邱春媚
Chiu, Chun-Mei
嘉義祝山地區砂質與壤質淋澱土土壤之特性與化育作用
topic_facet 淋澱土
淋澱化作用
土壤微形態構造
黏土礦物
風化序列
化育作用
Spodosols
podzolization
clay illuviation
soil micromorphological characteristics
description 淋澱土通常生成於冷涼潮濕的氣候、針葉林植生與砂質地母質。阿里山祝山地區位於台灣中部次亞高山地區,海拔高度約2,300公尺,年雨量3,910公釐,氣候終年涼爽濕潤、全年幾乎無明顯乾燥季節,此土壤溫度境況為溫和與土壤水分境況為濕潤。本研究區之植被為紅檜(Chamaecyparis formosensis)及鐵杉(Tsuga chinensis)佔優勢,並有少數華山松(Pinus armandii)或雲葉(Trochodendron aralioides)相伴而生,人工柳杉林,亦為本區主要林相。地被植物主要以玉山箭竹(Yushania niitakayanensis)佔絕對優勢與芒草(Miscanthus floridulus)和一些蕨類及苔蘚類植物。研究區屬阿里山山脈主脈上,為晚期中新世岩層,主要以砂岩、坋砂岩與頁岩所構成,大部分母質化育生成之淋澱土為黏質壤土的。本研究目的在探討嘉義祝山地區砂質與壤質淋澱土土壤樣體之形態特徵、理化性質、黏土礦物組成、土壤之化育作用與礦物風化序列。 沿祝山地區林業道路兩旁至祝山頂間採集五個代表性土壤樣體。研究顯示五個供試土壤樣體,一個屬於壤質砂土,三個屬於砂質壤土,一個屬於砂質黏壤土,均屬於強酸性土壤(pH 3.2-5.0),且極低交換性鹽基與極低鹽基飽和度(BS<15%)之土壤化學性質。有機碳的分佈,主要分布在土壤表層之O或A化育層有最大量,淋澱層(Bs)次之,漂白層(E)含量最低。在土壤物理分析上,粘粒含量在漂白層通常較低,隨深度增加而增加,在B化育層達到最大量,而C層又漸減。淋澱化作用盛行時,土壤剖面中亦可發現粘粒有向下移動聚積(Bt)之現象且在淋澱層中進行累積。 淋澱層中之有機碳含量與無定形、有機態以及游離態鐵與鋁含量均明顯較漂白層(E)高,顯示土壤中有多量活性鐵、鋁與有機質形成有機鐵或鋁錯合物型態向下移動聚積,進而形成暗色或紅棕色等淋澱化物質之淋澱土。黏粒與有機碳含量以及鐵、鋁之線性迴歸分析顯示,本區不論砂質或壤質淋澱土中,淋澱化物質之化育作用,除了與有機碳含量有顯著相關之外,另與粘粒移動亦有顯著相關。 由土壤微形態構造觀察發現,暗黑色有機錯合物沿著孔隙藉由溶質移動而向下移動。在適當環境下,土壤孔隙或土壤砂粒子與土壤基質上沉澱而生成有機之披覆體或有機鐵與鋁之披覆體。除暗色有機錯合物之外,同時可觀察到細微粘粒膜之存在,此與土壤物理分析與化學分析結果吻合,意即有機物與鐵、鋁以及粘粒移動是可能同時存在於土壤體中。五個土壤樣體之黏土礦物組成,在漂白層(E)中主要以蛭石、伊萊石及蛭石-伊萊石混層礦物為主,在淋澱層(Bs)中主要以蛭石含量較豐,且亦有相當量之蛭石-伊萊石混層礦物,同時水合蛭石含量也漸增。母質則以伊萊石為主,推測本研究區內礦物風化序列為伊萊石→蛭石(或蛭石-伊萊石混層礦物)→水化蛭石。 本研究區之砂質與壤質淋澱土之土壤化育作用可能同時具有淋澱化作用與粘粒移動作用。在坡度平緩、質地屬壤質砂土或砂質壤土且腐植質含量較豐以及有機酸含量充分情況下,有機物與鐵或鋁鍵結含量多,伴隨大量溶質滲漏而較易移動,以淋澱化作用為主伴隨些微黏粒移動,但在砂質黏壤土之地區,其粘粒聚積作用與淋澱化作用同時存在。 Spodosols occur mainly in cool humid climates under coniferous forest vegetation in medium to coarse textured parent material. Chushan area of Alishan is located in subalpine area in southern Taiwan. The elevation of study area is about 2,300 meters. Annual rainfall is 3,910 mm. The climate is cool and humid and has no dry season. The soil temperature regime and soil moisture regime are mesic and udic, respectively. The vegetation types are dominant with Taiwan red cypress (Chamaecyparis formosensis) and Chinese hemlock (Tsuga chinensis), with minor amounts of pine (Pinus armandii) and Wheel stamen tree (Trochodendron aralioides). Peacock pine (Cryptomeria japonica) which is planted by human also takes one important part of vegetation types. The ground vegetation is dominated by Yushan cane (Yushania niitakayanensis), with minor amounts of Japanese silvergrass (Miscanthus floridulus), fern and moss. The study area is located at Alishan mountain, which was mainly formed by late Miocene sandstone, siltstone and shale. The soil texture of the parent material of Spodosol in the study area is clay loam. The objectives of this study are to explore the soil characteristics, physical and chemical properties, compositions of clay minerals, genesis and weathering sequence of clay mineralogy of sandy and loamy Spodosols in Chushan region in Chiayi. Five representative soil pedons were sampled at the top of Chushan. The soil texture of spodic horizon in five pedons can be divided into three classes including loamy sand, sandy loam, and sandy clay loam. Soil Chemical properties are characterized with strong acidity (pH 3.2-5.0) and very low bases saturation (<15%). The depth distribution of organic carbon is characterized by higher content in the spodic horizon (Bs) than that of overlying eluvial E horizon. Clay was significantly reduced in albic E horizon and increased in the spodic horizon of pedons. Podzolization is regarded as the main pedogenic process combined with minor process of clay illuviation occurred in the pedons of Chushan area. The content of organic carbon and different forms of Fe of the spodic horizon are significantly higher than that of albic horizon. These results indicate that the spodic horizon is formed predominantly by the illuviation of organo-metallic complexes. The significant correlations among clay, organic carbon, and Fe content were found by the linear regression analysis (p<0.001). These relationships indicate that the podzolization is main pedogenic process for sandy and loamy Spodosols in the study area. The soil micromorphological characteristics suggest dark pellets of organic compounds were leached downward with soil solution along the soil pores during the wet season. The organs or organo-ferrans coated along the soil voids, grains, and soil groundmass in soil horizons. Meanwhile, the slightly oriented clay coating along the soil pore can be found. The soil physical and chemical properties also indicated that the organic carbon, Fe, and clay were illuviated in the spodic horizon. The clay mineralogy of albic horizon in five pedons are prominent with vermiculite, illite and vermiculite-illite interstratified minerals, but those in the spodic horizon is major with vermiculite and hydroxy-interlayered vermiculite (HIV). The clay mineralogy of parent material in five pedons is major with illite. The weathering sequences of clay minerals in five selected pedons can be proposed as the following sequences: illite → vermiculite, vermiculite and illite interstratified minerals → vermiculite or HIV. Podzolization and clay illuviation are the pedogenic processes of sandy and loamy Spodosols in the study area. Forest soils located in gentle slope are characterized by loamy sand or sandy loam texture, abundant humus and organic acid, more content of organo-Fe complexes. Podzolization is the main pedogenic process in sandy Spodosol, however, the podzolizaiton and clay illuviation could be existed at the same time in loamy Spodosols. 中文摘要 --- Ⅰ 英文摘要 --- Ⅲ 目錄 --- Ⅴ 表目錄 --- Ⅶ 圖目錄 --- Ⅷ 第一章 前言 --- 1 第二章 前人研究 --- 3 第三章 材料與方法 --- 10 第四章 結果 --- 27 第五章 討論 --- 102 第六章 結論 --- 116 第七章 參考文獻 --- 118 附錄 --- 125
author2 陳尊賢
臺灣大學:農業化學研究所
format Thesis
author 邱春媚
Chiu, Chun-Mei
author_facet 邱春媚
Chiu, Chun-Mei
author_sort 邱春媚
title 嘉義祝山地區砂質與壤質淋澱土土壤之特性與化育作用
title_short 嘉義祝山地區砂質與壤質淋澱土土壤之特性與化育作用
title_full 嘉義祝山地區砂質與壤質淋澱土土壤之特性與化育作用
title_fullStr 嘉義祝山地區砂質與壤質淋澱土土壤之特性與化育作用
title_full_unstemmed 嘉義祝山地區砂質與壤質淋澱土土壤之特性與化育作用
title_sort 嘉義祝山地區砂質與壤質淋澱土土壤之特性與化育作用
publishDate 2004
url http://ntur.lib.ntu.edu.tw/handle/246246/58465
http://ntur.lib.ntu.edu.tw/bitstream/246246/58465/1/ntu-93-R91623410-1.pdf
long_lat ENVELOPE(169.450,169.450,-72.217,-72.217)
geographic Peacock
geographic_facet Peacock
genre Arctic
genre_facet Arctic
op_relation 中央氣象局。2000。氣象資料年報:第一部份-地面資料。 何春蓀。1986。臺灣地質概論-台灣地質圖說明書。第二版。中華名國經濟部中央地質調查所。p. 40-57。 李心儀。1995。台灣中部人倫林道淋澱土之特性、化育與分類。國立臺灣大學農業化學研究所碩士論文。 林光清。1988。拉拉山自然保護區之土壤。國立臺灣大學農業化學研究所碩士論文。 林光清、陳尊賢、張仲民。1988。拉拉山土壤之形態、理化性質與分類。中國農業化學會誌。27(2): 94-103。 林經維。2000。祝山與萬歲山區土壤特性、化育與分類。國立臺灣大學農業化學研究所碩士論文。 茹皆耀、孟華。1947。臺中縣之土壤。臺灣省農業試驗所報告第六號。 陳培源。1973。臺灣黏土礦物與黏土礦物區域。地質創刊號: 41-52。 楊家宏。1993。臺灣北部地區似淋澱化土之特性、化育與分類。國立臺灣大學農業化學研究所碩士論文。 劉鎮宗。1990。臺灣北部塔曼山區灰壤土之特性、化育與分類。國立臺灣大學農業化學研究所碩士論文。 劉鎮宗、陳尊賢。1991。塔曼山區灰壤土之特性、化育與分類。中國農業化學會誌。28(2): 148-159。 劉禎祺。2004。臺灣中部亞高山森林地區具粘粒聚積之淋澱化土壤之特性與化育作用。國立臺灣大學農業化學研究所博士論文。 蔣先覺。1990。臺灣灰土之特性、化育與分類。國立臺灣大學森林研究所碩士論文。 蔣先覺、程煒兒。1984。臺灣若干森林土壤之描述:1. 灰化土。臺灣省林業試驗所報告第426號。 Alexander, E. B., C. L. Ping., and Krosse, P. 1994. Podzolization in ultramafic materials in southeast Alaska. Soil Sci. 157:46-52. Anderson, H. A., M. L. Berrow., V.C. Farmer., A. Hepburn., J. D. Russell., and A. D. Walker. 1982. A reassessment of podzol formation process. J. Soil. Sci. 33:125-136. Barett, L. R., R. J. Schaetzl. 1992. An examination of podzolization near Lake Michigan using chronofunctions. Can. J. Soil. Sci. 72: 527-541. Blake, G. R., and K. H. Hartage 1986. Bulk density. In Klute, A. (ed.) Methods of soil analysis, part 1. Physical and mineralogical methods. 2nd ed. Agronomy monograph 9: 363-375. Madison, WI. Bockheim, I., and Ugolini, F. 1990. A review of pedogenic zonation in well-drained soils of southern circumpolar region. Quat. Res. 34:47-66. Bockheim, J. G. 2003. Genesis of Bisequal soils on acidic drift in the upper Great Lakes Region, U.S.A. Soil Sci. Soc. Am. J. 67:612:619. Boudot, J. P., A. Bel Hadj Brahim., R. Steiman., and F. Seigle Murandi. 1989. Biodegradation of synthetic organo-metallic complexes of iron and aluminum with selected metal to carbon ratios. Soil Biol. Biochem, 21:961-966. Bullock, P. N., and B. Clayden. 1980. The morphological properties of Spodosols. p. 45-65. In B. K. G. Theng (ed.) Soils with variable charge. New Zealand Society of Soil Science, Soils Bureau, Department of Science and Industrial Research, Lower Hutt, New Zealand. Chen, P. Y. 1977. Table of key lines in X-ray powder diffraction patterns of minerals in clays and associated roaks. Printed by authority of the state of Indiana Bloomington, Indiana. Chen, Z. S. 1988. Spodosols of Taiwan. Soil and Fertilizer in Taiwan. 1988. p.3-16. Chesworth, W., and F. Macias-Vasquez. 1985. pe, pH and podzolization. Am. J. Sci. 285: 18-146. Dahlgren, R. A., and Ugolini, F. C. 1989. Aluminum fractionation of soil solutions from unperturbed and tephra-treated spodosols, Cascade Range, Washington, U.S.A. Soil Sci. Soc. Am. J. 53:559-566. Dahlgren, R. A., and D. J. Marrett. 1991. Organic carbon sorption in Arctic and subalpine Spodosol B horizons. Soil Sci. Soc. Am. J. 55:1382-1390. Daly, B. K. 1982. Identification of podzols and podzolized soils in New Zealand by relative absorbance of oxalate extracts of A and B horizons. Geoderma 28: 29-38. Fanning, D. S., V. Z. Keramidas, and M. A. El-Desoky. 1989. Micas. p.551-634. In J. B. Dixon and S. B. Weed (eds.) Minerals in soil environments. Second Edition. Soil. Sci. Soc. Am., Madsion, WI. Gardner, W. H., and K. H. Hartage. 1986. Bulk density. In Klute, A. (ed.) Methods of soil analysis, part 1. Physical and mineralogical methods. 2nd ed. Agronomy monograph 9:493-544. Madsion, WI. Gee, G. W. and J. W. Bauder. 1986. Partical-size analysis. In Klute, A. (ed.) Methods of soil analysis, part 1. Physical and mineralogical methods. 2nd ed. Agronomy monograph 9:383-411. Madsion, WI. Giesler, R., and U. Lundström. 1993. Soil solution chemistry: Effects of bulking soil samples. Soil Sci. Soc. Am. J. 57:1283-1288. Grossman, J., and P. Uduft., 1991. The extraction of soil water by the suction-cup method: a review. J. soil Sci. 42:83-93. Hseu, Z. Y., C. C. Tsai., C. W. Lin., and Z. S. Chen. 2004. Transitional soil characteristics between Ultisols and Spodosols in the subalpine forest of Taiwan. Soil Sci. 169:457-467. Ilvesnimei, H., R. Giesler., P. A. W. Van Hees., T. Magnussson., and P. A. Melkerud. 2000. General description of the sampling techniques and the sites investigated in the Fennoscandinavian podzolization project. Geoderma 94:109-123. Inoue, K., P. M. Huang. 1990. Peturbation of imogolite formation by humic substances. Soil. Sci. Soc. Am. J. 54:1490-1497. Jansen, B., K. G. Nierop., and J. M. Verstraren. 2003. Mobility of Fe(II), Fe(III) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios. Geoderma 113:323-340. Jersak, J., R. Amundson., and G. J. Brimhall. 1995. A mass balance analysis of podzolization: examples from northern United States. Geoderma 66:15-42. Johns, W. D., R. E.Grim., and W. F. Bradley. 1954. Quantitative estimation of clay minerals by diffraction methods. J. Sed. Petrol. 24:242-251. Joslin, J. D., P. A. Mays., M. H. Wolfe., J. M. Kelley., R. W. Garber., and P. F. Brewer., 1987. Chemistry of tension lysimeter water and lateral flow in spruce and hardwood stands. J. Environ. Qual. 16:153-160. Karltun, E., D. C. Bain., J. P. Gustafsson., H. Mannerkoski., E. Murad., U. Wagner., A. R. Fraser., W. J. Mchardy., and M. Starr. 2000. Surface reactivity of poorly-orderd minerals in podzol B horizons. Geoderma 94:265-288. Li, S. Y., Z. S. Chen., and J. C. Liu. 1998. Subalpine loamy spodosols in Taiwan: characteristics, micromorphology, and genesis. Soil Sci. Soc. Am. J. 62:710-716. Lin, C. W., Z. Y. Hseu., and Z. S. Chen. 2002. Clay mineralogy of spodosols with high clay contents in the subalpines of Taiwan. Clays Clay Miner. 50:726-735. Liu, J. C., and Z. S. Chen. 2004. Soil characteristics and clay mineralogy of two subalpine forest spodosols with clay accumulation in Taiwan. Soil Sci. 169:66-80. Litaor, M. I. 1988. Review of soil solution samplers. Water Resour. Res. 25: 727-733. Loveland, P. J. and P. Digby. 1984. The extraction of Fe and Al by 0.1 M pyrophosphate solutions: a comparison of some techniques. J. Soil. Sci. 35:243-250. Lundström, U. S. 1993. The role of organic acids in the soil solution chemistry of a podzolized soil. J. Soi. Sci. 44:121-133. Lundström, U. S., N. van Breemen., A.G. Jongmans. 1995. Evidence for microbial decomposition of organic acids during podzolization. Eur. J. Soi. Sci. 44:121-133. Lundström. U. S., N. van Breemen., D. Bain. 2000. The podzolization process: A review. Geoderma 94:91-107. Madsen, H. B., Nørnberg, P. 1995. Mineralogy of four sandy soils developed under heather, oak, spruce, and grass in the same fluviogical deposit in Denmark. Geoderma 64:233-256. Mcdowell, W. H., and T. Wood. 1984. Podzolization: soil process control dissolved organic carbon concentration in stream water. Soil Sci. 137:23-32. Mckeague, J. A., F. DeConnick, and D. P. Franzmeier. 1983. Spodosols. p.217-252. In L. P. Wilding, N. E.Smeck, and G. F. Hall (ed.) Pedogenesis and Soil Taxonomy, II. The soil orders. Elsevier Sci. Publ. Comp., New York, U.S.A and Amsterdam, The Netherlands. Mclean, E. O. 1982.Soil pH and lime requirement. In Page, A. L. et al. (ed.) Methods of soil analysis, part 2. Chemical and microbiological properties. 2nd ed. Agronomy monograph 9:199-244. Madsion, WI. Mehra, O. P. and M. L. Jackson. 1960. Iron oxides removed from soils and clays by s dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7:317-327. Mokma, D. L., P. Buurman. 1982. Podzols and podzolization in temperate regions, ISM Monograh 1. International Soil Museum, Wageningen, The Netherlands. Mokma, D. L. 1993. Color and amorphous materials in Spodosols from Michigan. Soil. Sci. Soc. Am. J. 57:125-128. Mokma, D. L and M. Y. Halla. 2003. Problems with Spodosol classification in the field. Soil. Surv. Horiz. 44:171-122. Mokma, D. L., M. Yli-Halla., and K. Lindqvist. 2004. Podzol formation in sandy soils of Finland. Geoderma. 120:259-272. Nelson, D. W. and L. E. Sommer. 1982. Total carbon, organic carbon, and organic matter. In Page, A. L. et al. (ed.) Methods of soil analysis, part 2. Chemical and microbiological properties. 2nd ed. Agronomy monograph 9:539-577. Madsion, WI. Petersen, L. 1976. Podzols and podzolization. Ph.D thesis. Royal Veterinary and Agricultural University, Copenhagen. Ping, C. L., S. Shoji., and T. Ito. 1988. Properties and classification of three volanic ash-derived pedons from Aleutian Island and Alaska Peninsula, Alaska. Soil Sci. Soc. Am. J. 52:455-462. Prosser, I. P., and S. J. Roseby. 1995. A chronosequence of rapid leaching of mixed podzol soil materials following sand mining. Geoderma 64:297-308. Ranger, J., R. Marques., and J. H. Jussy. 2001. Forest soil dynamics during stand development assessed by lysimeter and centrifuge solutions. For. Eco. Manag. 144:129-145. Schaefer, C. E.R., J. C. ker., R. J. Gilkes., J. C. Campos., L. M. da Costa., and A. Saadi. 2002. Pedogenesis on the uplands of the Diamantina plateau, Minas Grais Brazil : a chemical and micropedogical study. Geoderma 107:243-269. Schaetzl, R. J., S. A. Isard. 1996. Regional-scale relationship between climate and strength of podzolization in the Great Lakes Region, North America. Catena 28:47-69. Soil Survey Staff. 1999. Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. 2nd ed. USDA-NRCS Agric. Hankb. 436. U. S. Gov. Print. Office, Washington, DC. Stanley, S. R., and E. J. Ciolkosz. 1981. Classification and genesis of Spodosols in the central Appalachians. Soil Sci. Soc. Am. J. 45:912-917. Thomas, G. W. 1982. Exchangeable cation. In Page, A. L. et al. (ed.) Methods of soil analysis, part 2. Chemical and microbiological properties. 2nd ed. Agronomy monograph 9:149-157. Madsion, WI. Tokuchi, N., H. Takeda., and G. Iwatsubo. 1993. Vertical changes in soil solution chemistry in soil profiles under coniferous forest. Geoderma 59:57-73. Ugolini, F. C. Dawson, H. and Zachera, J., 1977. Direct evidence of particle migration of soil solution of a podzol. Sci. 198:603-605. Ugolini, F. C., R. Dahlgren., S. Shoji., and T. Ito. 1988. An example of andoslization and podzolization as revealed by soil solution studies, south Hakkoda, northeastern Japan. Soil Sci. 145: 111-125. Van Hees, P. A. W., U. S. Lundström., M. Starr., R. Gisler., 2000a. Factors influencing aluminum concentrations in soil solution from podzols. Geoderma 94:289-310. Van Hees, P. A. W., U. S. Lundström., R. Gisler., 2000b. Low molecular weight organic acids and their Al-complexes in soil solution-Composition, distribution and seasonal variation in three podzolized soils. Geoderma 94:171-198. Van Hees, P. A. W., U. S. Lundström., 2000. Equilibrium models of Aluminum and iron complexation with different organic acids in soil solution. Geoderma 94: 201-221. Zabowski, D., and F. C. Ugolini. 1990. Lysimeter and centrifuge soil solutions: Seasonal differences between methods. Soil Sci. Soc. Am. J. 54:1130-1135. Wang, C., J. A. McKeague., and H. Kodama. 1986. Pedogenic imogolite and soil environments: case study of spodosols in Quebec, Canada. Soil Sci. Soc. Am. J. 50:711-718.
_version_ 1766302703024078848
spelling ftntaiwanuniv:oai:140.112.114.62:246246/58465 2023-05-15T14:28:32+02:00 嘉義祝山地區砂質與壤質淋澱土土壤之特性與化育作用 Characteristics and Pedogenesis of the Sandy and Loamy Spodosols in Chushan region in Chiayi. 邱春媚 Chiu, Chun-Mei 陳尊賢 臺灣大學:農業化學研究所 2004 2409225 bytes application/pdf http://ntur.lib.ntu.edu.tw/handle/246246/58465 http://ntur.lib.ntu.edu.tw/bitstream/246246/58465/1/ntu-93-R91623410-1.pdf zh-TW en_US chi eng 中央氣象局。2000。氣象資料年報:第一部份-地面資料。 何春蓀。1986。臺灣地質概論-台灣地質圖說明書。第二版。中華名國經濟部中央地質調查所。p. 40-57。 李心儀。1995。台灣中部人倫林道淋澱土之特性、化育與分類。國立臺灣大學農業化學研究所碩士論文。 林光清。1988。拉拉山自然保護區之土壤。國立臺灣大學農業化學研究所碩士論文。 林光清、陳尊賢、張仲民。1988。拉拉山土壤之形態、理化性質與分類。中國農業化學會誌。27(2): 94-103。 林經維。2000。祝山與萬歲山區土壤特性、化育與分類。國立臺灣大學農業化學研究所碩士論文。 茹皆耀、孟華。1947。臺中縣之土壤。臺灣省農業試驗所報告第六號。 陳培源。1973。臺灣黏土礦物與黏土礦物區域。地質創刊號: 41-52。 楊家宏。1993。臺灣北部地區似淋澱化土之特性、化育與分類。國立臺灣大學農業化學研究所碩士論文。 劉鎮宗。1990。臺灣北部塔曼山區灰壤土之特性、化育與分類。國立臺灣大學農業化學研究所碩士論文。 劉鎮宗、陳尊賢。1991。塔曼山區灰壤土之特性、化育與分類。中國農業化學會誌。28(2): 148-159。 劉禎祺。2004。臺灣中部亞高山森林地區具粘粒聚積之淋澱化土壤之特性與化育作用。國立臺灣大學農業化學研究所博士論文。 蔣先覺。1990。臺灣灰土之特性、化育與分類。國立臺灣大學森林研究所碩士論文。 蔣先覺、程煒兒。1984。臺灣若干森林土壤之描述:1. 灰化土。臺灣省林業試驗所報告第426號。 Alexander, E. B., C. L. Ping., and Krosse, P. 1994. Podzolization in ultramafic materials in southeast Alaska. Soil Sci. 157:46-52. Anderson, H. A., M. L. Berrow., V.C. Farmer., A. Hepburn., J. D. Russell., and A. D. Walker. 1982. A reassessment of podzol formation process. J. Soil. Sci. 33:125-136. Barett, L. R., R. J. Schaetzl. 1992. An examination of podzolization near Lake Michigan using chronofunctions. Can. J. Soil. Sci. 72: 527-541. Blake, G. R., and K. H. Hartage 1986. Bulk density. In Klute, A. (ed.) Methods of soil analysis, part 1. Physical and mineralogical methods. 2nd ed. Agronomy monograph 9: 363-375. Madison, WI. Bockheim, I., and Ugolini, F. 1990. A review of pedogenic zonation in well-drained soils of southern circumpolar region. Quat. Res. 34:47-66. Bockheim, J. G. 2003. Genesis of Bisequal soils on acidic drift in the upper Great Lakes Region, U.S.A. Soil Sci. Soc. Am. J. 67:612:619. Boudot, J. P., A. Bel Hadj Brahim., R. Steiman., and F. Seigle Murandi. 1989. Biodegradation of synthetic organo-metallic complexes of iron and aluminum with selected metal to carbon ratios. Soil Biol. Biochem, 21:961-966. Bullock, P. N., and B. Clayden. 1980. The morphological properties of Spodosols. p. 45-65. In B. K. G. Theng (ed.) Soils with variable charge. New Zealand Society of Soil Science, Soils Bureau, Department of Science and Industrial Research, Lower Hutt, New Zealand. Chen, P. Y. 1977. Table of key lines in X-ray powder diffraction patterns of minerals in clays and associated roaks. Printed by authority of the state of Indiana Bloomington, Indiana. Chen, Z. S. 1988. Spodosols of Taiwan. Soil and Fertilizer in Taiwan. 1988. p.3-16. Chesworth, W., and F. Macias-Vasquez. 1985. pe, pH and podzolization. Am. J. Sci. 285: 18-146. Dahlgren, R. A., and Ugolini, F. C. 1989. Aluminum fractionation of soil solutions from unperturbed and tephra-treated spodosols, Cascade Range, Washington, U.S.A. Soil Sci. Soc. Am. J. 53:559-566. Dahlgren, R. A., and D. J. Marrett. 1991. Organic carbon sorption in Arctic and subalpine Spodosol B horizons. Soil Sci. Soc. Am. J. 55:1382-1390. Daly, B. K. 1982. Identification of podzols and podzolized soils in New Zealand by relative absorbance of oxalate extracts of A and B horizons. Geoderma 28: 29-38. Fanning, D. S., V. Z. Keramidas, and M. A. El-Desoky. 1989. Micas. p.551-634. In J. B. Dixon and S. B. Weed (eds.) Minerals in soil environments. Second Edition. Soil. Sci. Soc. Am., Madsion, WI. Gardner, W. H., and K. H. Hartage. 1986. Bulk density. In Klute, A. (ed.) Methods of soil analysis, part 1. Physical and mineralogical methods. 2nd ed. Agronomy monograph 9:493-544. Madsion, WI. Gee, G. W. and J. W. Bauder. 1986. Partical-size analysis. In Klute, A. (ed.) Methods of soil analysis, part 1. Physical and mineralogical methods. 2nd ed. Agronomy monograph 9:383-411. Madsion, WI. Giesler, R., and U. Lundström. 1993. Soil solution chemistry: Effects of bulking soil samples. Soil Sci. Soc. Am. J. 57:1283-1288. Grossman, J., and P. Uduft., 1991. The extraction of soil water by the suction-cup method: a review. J. soil Sci. 42:83-93. Hseu, Z. Y., C. C. Tsai., C. W. Lin., and Z. S. Chen. 2004. Transitional soil characteristics between Ultisols and Spodosols in the subalpine forest of Taiwan. Soil Sci. 169:457-467. Ilvesnimei, H., R. Giesler., P. A. W. Van Hees., T. Magnussson., and P. A. Melkerud. 2000. General description of the sampling techniques and the sites investigated in the Fennoscandinavian podzolization project. Geoderma 94:109-123. Inoue, K., P. M. Huang. 1990. Peturbation of imogolite formation by humic substances. Soil. Sci. Soc. Am. J. 54:1490-1497. Jansen, B., K. G. Nierop., and J. M. Verstraren. 2003. Mobility of Fe(II), Fe(III) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios. Geoderma 113:323-340. Jersak, J., R. Amundson., and G. J. Brimhall. 1995. A mass balance analysis of podzolization: examples from northern United States. Geoderma 66:15-42. Johns, W. D., R. E.Grim., and W. F. Bradley. 1954. Quantitative estimation of clay minerals by diffraction methods. J. Sed. Petrol. 24:242-251. Joslin, J. D., P. A. Mays., M. H. Wolfe., J. M. Kelley., R. W. Garber., and P. F. Brewer., 1987. Chemistry of tension lysimeter water and lateral flow in spruce and hardwood stands. J. Environ. Qual. 16:153-160. Karltun, E., D. C. Bain., J. P. Gustafsson., H. Mannerkoski., E. Murad., U. Wagner., A. R. Fraser., W. J. Mchardy., and M. Starr. 2000. Surface reactivity of poorly-orderd minerals in podzol B horizons. Geoderma 94:265-288. Li, S. Y., Z. S. Chen., and J. C. Liu. 1998. Subalpine loamy spodosols in Taiwan: characteristics, micromorphology, and genesis. Soil Sci. Soc. Am. J. 62:710-716. Lin, C. W., Z. Y. Hseu., and Z. S. Chen. 2002. Clay mineralogy of spodosols with high clay contents in the subalpines of Taiwan. Clays Clay Miner. 50:726-735. Liu, J. C., and Z. S. Chen. 2004. Soil characteristics and clay mineralogy of two subalpine forest spodosols with clay accumulation in Taiwan. Soil Sci. 169:66-80. Litaor, M. I. 1988. Review of soil solution samplers. Water Resour. Res. 25: 727-733. Loveland, P. J. and P. Digby. 1984. The extraction of Fe and Al by 0.1 M pyrophosphate solutions: a comparison of some techniques. J. Soil. Sci. 35:243-250. Lundström, U. S. 1993. The role of organic acids in the soil solution chemistry of a podzolized soil. J. Soi. Sci. 44:121-133. Lundström, U. S., N. van Breemen., A.G. Jongmans. 1995. Evidence for microbial decomposition of organic acids during podzolization. Eur. J. Soi. Sci. 44:121-133. Lundström. U. S., N. van Breemen., D. Bain. 2000. The podzolization process: A review. Geoderma 94:91-107. Madsen, H. B., Nørnberg, P. 1995. Mineralogy of four sandy soils developed under heather, oak, spruce, and grass in the same fluviogical deposit in Denmark. Geoderma 64:233-256. Mcdowell, W. H., and T. Wood. 1984. Podzolization: soil process control dissolved organic carbon concentration in stream water. Soil Sci. 137:23-32. Mckeague, J. A., F. DeConnick, and D. P. Franzmeier. 1983. Spodosols. p.217-252. In L. P. Wilding, N. E.Smeck, and G. F. Hall (ed.) Pedogenesis and Soil Taxonomy, II. The soil orders. Elsevier Sci. Publ. Comp., New York, U.S.A and Amsterdam, The Netherlands. Mclean, E. O. 1982.Soil pH and lime requirement. In Page, A. L. et al. (ed.) Methods of soil analysis, part 2. Chemical and microbiological properties. 2nd ed. Agronomy monograph 9:199-244. Madsion, WI. Mehra, O. P. and M. L. Jackson. 1960. Iron oxides removed from soils and clays by s dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7:317-327. Mokma, D. L., P. Buurman. 1982. Podzols and podzolization in temperate regions, ISM Monograh 1. International Soil Museum, Wageningen, The Netherlands. Mokma, D. L. 1993. Color and amorphous materials in Spodosols from Michigan. Soil. Sci. Soc. Am. J. 57:125-128. Mokma, D. L and M. Y. Halla. 2003. Problems with Spodosol classification in the field. Soil. Surv. Horiz. 44:171-122. Mokma, D. L., M. Yli-Halla., and K. Lindqvist. 2004. Podzol formation in sandy soils of Finland. Geoderma. 120:259-272. Nelson, D. W. and L. E. Sommer. 1982. Total carbon, organic carbon, and organic matter. In Page, A. L. et al. (ed.) Methods of soil analysis, part 2. Chemical and microbiological properties. 2nd ed. Agronomy monograph 9:539-577. Madsion, WI. Petersen, L. 1976. Podzols and podzolization. Ph.D thesis. Royal Veterinary and Agricultural University, Copenhagen. Ping, C. L., S. Shoji., and T. Ito. 1988. Properties and classification of three volanic ash-derived pedons from Aleutian Island and Alaska Peninsula, Alaska. Soil Sci. Soc. Am. J. 52:455-462. Prosser, I. P., and S. J. Roseby. 1995. A chronosequence of rapid leaching of mixed podzol soil materials following sand mining. Geoderma 64:297-308. Ranger, J., R. Marques., and J. H. Jussy. 2001. Forest soil dynamics during stand development assessed by lysimeter and centrifuge solutions. For. Eco. Manag. 144:129-145. Schaefer, C. E.R., J. C. ker., R. J. Gilkes., J. C. Campos., L. M. da Costa., and A. Saadi. 2002. Pedogenesis on the uplands of the Diamantina plateau, Minas Grais Brazil : a chemical and micropedogical study. Geoderma 107:243-269. Schaetzl, R. J., S. A. Isard. 1996. Regional-scale relationship between climate and strength of podzolization in the Great Lakes Region, North America. Catena 28:47-69. Soil Survey Staff. 1999. Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. 2nd ed. USDA-NRCS Agric. Hankb. 436. U. S. Gov. Print. Office, Washington, DC. Stanley, S. R., and E. J. Ciolkosz. 1981. Classification and genesis of Spodosols in the central Appalachians. Soil Sci. Soc. Am. J. 45:912-917. Thomas, G. W. 1982. Exchangeable cation. In Page, A. L. et al. (ed.) Methods of soil analysis, part 2. Chemical and microbiological properties. 2nd ed. Agronomy monograph 9:149-157. Madsion, WI. Tokuchi, N., H. Takeda., and G. Iwatsubo. 1993. Vertical changes in soil solution chemistry in soil profiles under coniferous forest. Geoderma 59:57-73. Ugolini, F. C. Dawson, H. and Zachera, J., 1977. Direct evidence of particle migration of soil solution of a podzol. Sci. 198:603-605. Ugolini, F. C., R. Dahlgren., S. Shoji., and T. Ito. 1988. An example of andoslization and podzolization as revealed by soil solution studies, south Hakkoda, northeastern Japan. Soil Sci. 145: 111-125. Van Hees, P. A. W., U. S. Lundström., M. Starr., R. Gisler., 2000a. Factors influencing aluminum concentrations in soil solution from podzols. Geoderma 94:289-310. Van Hees, P. A. W., U. S. Lundström., R. Gisler., 2000b. Low molecular weight organic acids and their Al-complexes in soil solution-Composition, distribution and seasonal variation in three podzolized soils. Geoderma 94:171-198. Van Hees, P. A. W., U. S. Lundström., 2000. Equilibrium models of Aluminum and iron complexation with different organic acids in soil solution. Geoderma 94: 201-221. Zabowski, D., and F. C. Ugolini. 1990. Lysimeter and centrifuge soil solutions: Seasonal differences between methods. Soil Sci. Soc. Am. J. 54:1130-1135. Wang, C., J. A. McKeague., and H. Kodama. 1986. Pedogenic imogolite and soil environments: case study of spodosols in Quebec, Canada. Soil Sci. Soc. Am. J. 50:711-718. 淋澱土 淋澱化作用 土壤微形態構造 黏土礦物 風化序列 化育作用 Spodosols podzolization clay illuviation soil micromorphological characteristics thesis 2004 ftntaiwanuniv 2016-02-20T00:10:06Z 淋澱土通常生成於冷涼潮濕的氣候、針葉林植生與砂質地母質。阿里山祝山地區位於台灣中部次亞高山地區,海拔高度約2,300公尺,年雨量3,910公釐,氣候終年涼爽濕潤、全年幾乎無明顯乾燥季節,此土壤溫度境況為溫和與土壤水分境況為濕潤。本研究區之植被為紅檜(Chamaecyparis formosensis)及鐵杉(Tsuga chinensis)佔優勢,並有少數華山松(Pinus armandii)或雲葉(Trochodendron aralioides)相伴而生,人工柳杉林,亦為本區主要林相。地被植物主要以玉山箭竹(Yushania niitakayanensis)佔絕對優勢與芒草(Miscanthus floridulus)和一些蕨類及苔蘚類植物。研究區屬阿里山山脈主脈上,為晚期中新世岩層,主要以砂岩、坋砂岩與頁岩所構成,大部分母質化育生成之淋澱土為黏質壤土的。本研究目的在探討嘉義祝山地區砂質與壤質淋澱土土壤樣體之形態特徵、理化性質、黏土礦物組成、土壤之化育作用與礦物風化序列。 沿祝山地區林業道路兩旁至祝山頂間採集五個代表性土壤樣體。研究顯示五個供試土壤樣體,一個屬於壤質砂土,三個屬於砂質壤土,一個屬於砂質黏壤土,均屬於強酸性土壤(pH 3.2-5.0),且極低交換性鹽基與極低鹽基飽和度(BS<15%)之土壤化學性質。有機碳的分佈,主要分布在土壤表層之O或A化育層有最大量,淋澱層(Bs)次之,漂白層(E)含量最低。在土壤物理分析上,粘粒含量在漂白層通常較低,隨深度增加而增加,在B化育層達到最大量,而C層又漸減。淋澱化作用盛行時,土壤剖面中亦可發現粘粒有向下移動聚積(Bt)之現象且在淋澱層中進行累積。 淋澱層中之有機碳含量與無定形、有機態以及游離態鐵與鋁含量均明顯較漂白層(E)高,顯示土壤中有多量活性鐵、鋁與有機質形成有機鐵或鋁錯合物型態向下移動聚積,進而形成暗色或紅棕色等淋澱化物質之淋澱土。黏粒與有機碳含量以及鐵、鋁之線性迴歸分析顯示,本區不論砂質或壤質淋澱土中,淋澱化物質之化育作用,除了與有機碳含量有顯著相關之外,另與粘粒移動亦有顯著相關。 由土壤微形態構造觀察發現,暗黑色有機錯合物沿著孔隙藉由溶質移動而向下移動。在適當環境下,土壤孔隙或土壤砂粒子與土壤基質上沉澱而生成有機之披覆體或有機鐵與鋁之披覆體。除暗色有機錯合物之外,同時可觀察到細微粘粒膜之存在,此與土壤物理分析與化學分析結果吻合,意即有機物與鐵、鋁以及粘粒移動是可能同時存在於土壤體中。五個土壤樣體之黏土礦物組成,在漂白層(E)中主要以蛭石、伊萊石及蛭石-伊萊石混層礦物為主,在淋澱層(Bs)中主要以蛭石含量較豐,且亦有相當量之蛭石-伊萊石混層礦物,同時水合蛭石含量也漸增。母質則以伊萊石為主,推測本研究區內礦物風化序列為伊萊石→蛭石(或蛭石-伊萊石混層礦物)→水化蛭石。 本研究區之砂質與壤質淋澱土之土壤化育作用可能同時具有淋澱化作用與粘粒移動作用。在坡度平緩、質地屬壤質砂土或砂質壤土且腐植質含量較豐以及有機酸含量充分情況下,有機物與鐵或鋁鍵結含量多,伴隨大量溶質滲漏而較易移動,以淋澱化作用為主伴隨些微黏粒移動,但在砂質黏壤土之地區,其粘粒聚積作用與淋澱化作用同時存在。 Spodosols occur mainly in cool humid climates under coniferous forest vegetation in medium to coarse textured parent material. Chushan area of Alishan is located in subalpine area in southern Taiwan. The elevation of study area is about 2,300 meters. Annual rainfall is 3,910 mm. The climate is cool and humid and has no dry season. The soil temperature regime and soil moisture regime are mesic and udic, respectively. The vegetation types are dominant with Taiwan red cypress (Chamaecyparis formosensis) and Chinese hemlock (Tsuga chinensis), with minor amounts of pine (Pinus armandii) and Wheel stamen tree (Trochodendron aralioides). Peacock pine (Cryptomeria japonica) which is planted by human also takes one important part of vegetation types. The ground vegetation is dominated by Yushan cane (Yushania niitakayanensis), with minor amounts of Japanese silvergrass (Miscanthus floridulus), fern and moss. The study area is located at Alishan mountain, which was mainly formed by late Miocene sandstone, siltstone and shale. The soil texture of the parent material of Spodosol in the study area is clay loam. The objectives of this study are to explore the soil characteristics, physical and chemical properties, compositions of clay minerals, genesis and weathering sequence of clay mineralogy of sandy and loamy Spodosols in Chushan region in Chiayi. Five representative soil pedons were sampled at the top of Chushan. The soil texture of spodic horizon in five pedons can be divided into three classes including loamy sand, sandy loam, and sandy clay loam. Soil Chemical properties are characterized with strong acidity (pH 3.2-5.0) and very low bases saturation (<15%). The depth distribution of organic carbon is characterized by higher content in the spodic horizon (Bs) than that of overlying eluvial E horizon. Clay was significantly reduced in albic E horizon and increased in the spodic horizon of pedons. Podzolization is regarded as the main pedogenic process combined with minor process of clay illuviation occurred in the pedons of Chushan area. The content of organic carbon and different forms of Fe of the spodic horizon are significantly higher than that of albic horizon. These results indicate that the spodic horizon is formed predominantly by the illuviation of organo-metallic complexes. The significant correlations among clay, organic carbon, and Fe content were found by the linear regression analysis (p<0.001). These relationships indicate that the podzolization is main pedogenic process for sandy and loamy Spodosols in the study area. The soil micromorphological characteristics suggest dark pellets of organic compounds were leached downward with soil solution along the soil pores during the wet season. The organs or organo-ferrans coated along the soil voids, grains, and soil groundmass in soil horizons. Meanwhile, the slightly oriented clay coating along the soil pore can be found. The soil physical and chemical properties also indicated that the organic carbon, Fe, and clay were illuviated in the spodic horizon. The clay mineralogy of albic horizon in five pedons are prominent with vermiculite, illite and vermiculite-illite interstratified minerals, but those in the spodic horizon is major with vermiculite and hydroxy-interlayered vermiculite (HIV). The clay mineralogy of parent material in five pedons is major with illite. The weathering sequences of clay minerals in five selected pedons can be proposed as the following sequences: illite → vermiculite, vermiculite and illite interstratified minerals → vermiculite or HIV. Podzolization and clay illuviation are the pedogenic processes of sandy and loamy Spodosols in the study area. Forest soils located in gentle slope are characterized by loamy sand or sandy loam texture, abundant humus and organic acid, more content of organo-Fe complexes. Podzolization is the main pedogenic process in sandy Spodosol, however, the podzolizaiton and clay illuviation could be existed at the same time in loamy Spodosols. 中文摘要 --- Ⅰ 英文摘要 --- Ⅲ 目錄 --- Ⅴ 表目錄 --- Ⅶ 圖目錄 --- Ⅷ 第一章 前言 --- 1 第二章 前人研究 --- 3 第三章 材料與方法 --- 10 第四章 結果 --- 27 第五章 討論 --- 102 第六章 結論 --- 116 第七章 參考文獻 --- 118 附錄 --- 125 Thesis Arctic National Taiwan University Institutional Repository (NTUR) Peacock ENVELOPE(169.450,169.450,-72.217,-72.217)