重金屬鋅或鎘誘發海葵(Aiptasia pulchella)體內金屬硫蛋白之研究

金屬硫蛋白 (Metallothionein, MT)是一種含有大量cysteine、耐熱的小分子量蛋白質。這種蛋白質已經被證實可以和重金屬連結,除了可以調控多餘的必需重金屬鋅或銅外,若是有非必需的重金屬(鎘或汞)進入生物體內,金屬硫蛋白可與這些金屬離子結合,作為解毒機制的一環。從之前的文獻知道,metallothionein具有作為生物指標的潛力。本實驗的實驗動物,海葵Aiptasia pulchella 容易飼養並具有無性生殖的特性,可減少實驗中的個體差異。將實驗動物暴露在不同濃度的鋅溶液 (0, 0.25, 0.5 或1.0 mg/L) 24, 48 或96小時 以及不同濃度的鎘溶液(0...

Full description

Bibliographic Details
Main Authors: 黃嘉儀, Huang, Chia-I
Other Authors: 陳俊宏, 臺灣大學:動物學研究研究所
Format: Thesis
Language:English
Published: 2007
Subjects:
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/56679
http://ntur.lib.ntu.edu.tw/bitstream/246246/56679/1/ntu-96-R94b41030-1.pdf
id ftntaiwanuniv:oai:140.112.114.62:246246/56679
record_format openpolar
institution Open Polar
collection National Taiwan University Institutional Repository (NTUR)
op_collection_id ftntaiwanuniv
language English
topic 金屬硫蛋白
海葵


誘發性
免疫組織染色
metallothionein
sea anemone
Aiptasia pulchella
zinc
cadmium
spellingShingle 金屬硫蛋白
海葵


誘發性
免疫組織染色
metallothionein
sea anemone
Aiptasia pulchella
zinc
cadmium
黃嘉儀
Huang, Chia-I
重金屬鋅或鎘誘發海葵(Aiptasia pulchella)體內金屬硫蛋白之研究
topic_facet 金屬硫蛋白
海葵


誘發性
免疫組織染色
metallothionein
sea anemone
Aiptasia pulchella
zinc
cadmium
description 金屬硫蛋白 (Metallothionein, MT)是一種含有大量cysteine、耐熱的小分子量蛋白質。這種蛋白質已經被證實可以和重金屬連結,除了可以調控多餘的必需重金屬鋅或銅外,若是有非必需的重金屬(鎘或汞)進入生物體內,金屬硫蛋白可與這些金屬離子結合,作為解毒機制的一環。從之前的文獻知道,metallothionein具有作為生物指標的潛力。本實驗的實驗動物,海葵Aiptasia pulchella 容易飼養並具有無性生殖的特性,可減少實驗中的個體差異。將實驗動物暴露在不同濃度的鋅溶液 (0, 0.25, 0.5 或1.0 mg/L) 24, 48 或96小時 以及不同濃度的鎘溶液(0, 0.05 ,0.25 或 0.5 mg/L) 24, 48 或72 小時,海葵的外型會有顯著的變化:身體和觸手會縮小,並且會有變黑的情形發生。在檢測海葵組織內重金屬的濃度,可以發現組織內重金屬的濃度會隨著處理時間或是重金屬濃度的增加而增加。透過抗體辨識發現海葵的metallothionein的分子量應該位在11~17 kDa之間,主要表現的至少有三種不同大小的蛋白質,推測其中之一應該為constitutive metallothionein;另外的為誘發性的metallothionein。誘發性的metallothionein的量會隨著暴露的時間以及金屬濃度增加,其表現量會有增加的趨勢。根據免疫組織染色的結果,Metallothionein在海葵體內呈現不均勻分佈。當暴露在較高濃度的鋅或鎘溶液中,身體部分的亮點會明顯增加;顯示metallothionein在身體部位呈點狀且較均勻地分佈。 Metallothioneins (MTs) are cysteine rich, heat stable and low molecular weight proteins. They have been widely used as biomarkers to reflect the level of heavy metal pollution. Sea anemones (Aiptasia pulchella) should reflect the real condition of its surroundings due to its sedentary. Normally, they are asexually reproduced by pedal laceration in laboratory cultural system. After exposure to different concentrations of cadmium (0, 0.05, 0.25 or 0.5 mg/L for 24, 48 or 72 hours) or zinc (0, 0.25, 0.5 or 1.0 mg/L for 24, 48 or 96 hours), obvious morphological alterations in A. pulchella were recorded. Their tentacles turned dark and their body shrank. By using atomic absorption to measure Zn or Cd concentration in A. pulchella, those metal-exposed sea anemones showed a time-dependent and a dose-dependent both zinc and cadmium accumulation. From the results of immunoblotting, the amount of metallothioneins in those metal-exposed A. pulchella increased following by a time-and dose-course. The molecular weight of the detected MTs was between 11 and 17 kDa. There were at least three bands appeared. One is assumed to be constitutive MT and the others are assumed to be induced metallothioneins. Immunofluorecent antibody detection of the distribution of metallothionein in A. pulchella under zinc or cadmium treatment demonstrated that the fluorescent particles in the body column significantly increased and the fluorescence of tentacles also intensified. The induction of metallothioneins in A. pulchella was shown being responsive to different concentrations of metals. Contents 口試委員審定書 --- i Abstract (English) --- ii Abtract (Chinese) --- iii 1. Introduction 1.1. Characteristics of metallothioneins --- 1 1.2. Heavy metals --- 3 1.3. Heavy metal pollution in the coastal areas --- 4 1.4. Cnidarians and heavy metals --- 5 1.5. Metallothionein isoforms --- 6 1.6 Toxicity assessment --- 7 2. Materials and Methods 2.1. Animals --- 10 2.2. Zn or Cd exposure --- 10 2.3. Measurement of heavy metal bioaccumulation --- 11 2.4. Partial purification of Metallothionein --- 11 2.5. SDS-PAGE --- 12 2.6. Immunoblotting --- 12 2.7. Immunohistochemistry --- 13 2.8. Statistics --- 14 3. Results 3.1. Morphological change after exposure to zinc and cadmium --- 15 3.2. Bioaccumulation in A. pulchella --- 15 3.3. Electrophoretic studies --- 16 3.4. Immunoblotting --- 17 3.5. Immunohistochemistry (IHC) --- 17 4. Discussion --- 18 5. References --- 24 FIGURES AND TABLES Fig 1. Morphological change after Zinc exposure --- 32 Fig 2. Morphological change after Cadmium exposure --- 34 Fig 3. Bioaccumulation of Zinc in Aiptasia pulchella --- 36 Fig 4. Bioaccumulation of Cadmium in Aiptasia pulchella --- 37 Fig 5. One-dimensional SDS-PAGE after Zinc exposure --- 38 Fig 6. One-dimensional SDS-PAGE after Cadmium exposure --- 40 Fig 7. Immunoblotting of Metallothionein in A. pulchella after Zinc exposure --- 42 Fig 8. Immunoblotting of Metallothionein in A. pulchella after Cadmium exposure --- 43 Fig 9. Metallothionein distribution in A. pulchella after Zinc exposure --- 44 Fig 10. Metallothionein distribution in A. pulchella after Cadmium exposure --- 49 Table 1. Zinc concentration in tissues of A. pulchella --- 54 Table 2. Cadmium concentration in tissues of A. pulchella --- 55
author2 陳俊宏
臺灣大學:動物學研究研究所
format Thesis
author 黃嘉儀
Huang, Chia-I
author_facet 黃嘉儀
Huang, Chia-I
author_sort 黃嘉儀
title 重金屬鋅或鎘誘發海葵(Aiptasia pulchella)體內金屬硫蛋白之研究
title_short 重金屬鋅或鎘誘發海葵(Aiptasia pulchella)體內金屬硫蛋白之研究
title_full 重金屬鋅或鎘誘發海葵(Aiptasia pulchella)體內金屬硫蛋白之研究
title_fullStr 重金屬鋅或鎘誘發海葵(Aiptasia pulchella)體內金屬硫蛋白之研究
title_full_unstemmed 重金屬鋅或鎘誘發海葵(Aiptasia pulchella)體內金屬硫蛋白之研究
title_sort 重金屬鋅或鎘誘發海葵(aiptasia pulchella)體內金屬硫蛋白之研究
publishDate 2007
url http://ntur.lib.ntu.edu.tw/handle/246246/56679
http://ntur.lib.ntu.edu.tw/bitstream/246246/56679/1/ntu-96-R94b41030-1.pdf
genre Polar Biology
genre_facet Polar Biology
op_relation Amiard, J.-C, Amiard-Triquet, C., Barka, S., Pellerin, J., Rainbow, P.S. 2006.Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat. Toxicol. 76, 160-202 Andrews, G.K. 2000. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem. Pharmacol. 59, 95-104 Barka, S., Pavillon, J.-F., Amiard, J.-C. 2001. Influence of different essential and non-essential metals on MTLP levels in the copepod Tigriopus brevicornis Comp. Biochem.Physiol. C 128, 479-493 Baudrimont, M., Andres, S., Metivaud, J., Lapaquellerie, Y., Ribeyre, F., Maillet, N.,Latouche, C., Boudou, A. 1999. Field transplantation of the freshwater bivalve Corbicula fluminea along a polymetallic contamination gradient (river lot, France): II.Metallothionein response to metal exposure. Environ. Toxicol. Chem. 18, 2472-2477 Blaise, C., Kusui, T. 1997. Acute Toxicity assessment of industrial effluents with a microplate-based Hydra attenuata assay. Environ. Toxicity Water Qual. 12, 53-60 Bourdineaud, J.-P., Baudrimont, M., Gonzalez, P., Moreau, J.-L. 2006. Challenging the model for induction of metallothionein gene expression. Biochimie 88, 1787-1792 Bebianno, M.J., Serafim, M.A. 2003. Variation of metal and metallothionein concentrations in a natural population of Ruditapes decussates. Arch. Environ. Contam. Toxicol. 44, 53-66 Binz, P.A., Kägi, J.H.R. 1999. Metallothionein: molecular evolution classification. In:Klaassen C. (Ed.), Metallothionein IV. Birkhäuser Verlag, Basel, 7-13 Boutet, I., Tanguy, A., Auffret, M., Riso, R., Moraga, D., 2002. Immunochemical quantification of metallothioneins in marine mollusks: Characterization of a metal exposure bioindicator. Environ. Toxicol. Chem. 21(5), 1009-1014. Brown B, Howard S., 1985a. Responses of coelenterates to trace metals: a field and laboratory evaluation. In: Fifth International Coral Reef Congress, Tahiti, Antenne Museum-EPHE, Moorea, French Polynesia. 465-470 - 25 - Bryan GW., 1976. Heavy metal contamination in the sea. In: Johnston R (Eds.). Marine Pollution. Academic Press, New York, USA, 185-302 Burgeot, T., Bocquen´e, G., Pingray, G., Godeffroy, D., Legrand, J., Dimeet, J., Marco, F.,Vincent, F., Henocque, Y., Oger-Jenneret, H., Galgani, F. 1994. Monitoring biological effects of contamination in marine fish along French coasts by measurement of ethoxyresorufin-O-deethylase activity. Ecotox. Environ. Saf. 131, 131–147 Butler, R.A., Roesijadi, G., 2001. Quantitative reverse transcription polymerase chain reaction of a molluscan metallothionein mRNA. Aquat. Toxicol. 54, 59-67 Canli, M., Stagg, R.M., Rodger, G., 1997. The induction of metallothionein in tissues of the Norway lobster (Nephrops norvegicus) and effects of cadmium, copper and zinc exposures on levels of the metal bound on metallothioneins. Tr. J. Zool. 19, 313-321 Carginale, V., Scudiero, R., Capasso, C., Capasso, A., Kille, P., Prisco, di. G., Parisi, E., 1998. Cadmium- induced differential accumulation of metallothionein isoforms in the Antarctic icefish, which exhibits no basal metallothionein protein but high endogenous mRNA levels. Biochem. J. 332, 475-481 Chapman, G.A., Kay, J., Kille, P., 1999. Structural and functional analysis of the rat metallothionein III genomic locus. Biochin. Biophys. Acta 1445, 32-329 ⣷14; Cheung, M.-S., Wang, W.-X., 2005. Influences of subcellular metal compartmentalization on the transfer to a predatory gastropod from different prey. Mar. Ecol. Prog. Ser. 286, 155-166 Chua, TE., 1992. Coastal aquaculture development and the environment: the role of coastal area management. Mar. Pollut. Bull. 25, 98-103 Coyle, P., Philcox, J.C., Carey, L.C., Rofe, A.M., 2002. Metallothionein: the multipurpose protein. Cellular and Molecular Life Sciences 59, 627-647 Dallinger, R., 1996. Metallothionein research in terrestrial invertebrates: synopsis and perspectives. Comp. Biochem. Physiol., C 113, 1250-1303 Davis, S. R.; Cousins, R. J., 2000. Metallothionein expression in animals: a physiological perspective on function. J. Nutr. 130, 1085-1088- 26 - ⣷14; Del, Ramo, J., Torreblanca, A., Martinez, M., Pastor, A., Diaz-Mayans, J. 1995. Quantification of Cadmium-Induced Metallothionein in Crustaceans by the Silver-Saturation Method. Marine Environmental Research 39, 121-125 Eaton, D. L.; Stacey, N. H.; Wong, K. L.; Klaassen, C. D., 1980.Dose-response of effects of various metal ions on rat liver metallothionein, glutathione, heme oxygenese, and cytochrome p-450. Toxicol. Appl. Pharmacol. 55, 393-402 Engelman, J., Hildebrandt, A., 1999. cDNA cloning and cadmium-induced expression of metallothionein mRNA in the zebra mussel Dreissena polymorpha. Biochem. Cell Biol. 77, 237-241 English, T.E., Storey, K.B., 2003. Freezing and anoxia stresses induce expression of metallothionein in the foot muscle and hepatopancreas of the marine gastropod Littorina littorina. J. Exp. Biol. 206, 2517-2524 Frazier, J.M., George, S.G., 1983. Cadmium kinetics in oysters—a comparative study of Crassostrea gigas and Ostrea edulis. Mar. Biol. 76, 55–61. George, S.G. 1982. Subcellular accumulation and detoxification of metals in aquatic animals. In: Vernberg, W.B. (Ed.), Physiological Mechanisms of Marine Pollutants. Academic Press, Oxford, pp. 3-52. Haq, F., Mahoney, M., Koropatnick, J. 2003. Signaling events for metallothionein induction. Mutat. Res. 533, 211-226 Hayes, Ruth A., Regondi, Simona, Winter, Matthew J., Butler, Patrick J., Agradi, Elisabetta,, Taylor, Edwin W., Chipman, Kevin, 2004. Cloning of a chub metallothionein cDNA and development of competitive RT-PCR of chub metallothionein mRNA as a potential biomarker of heavy metal exposure. Marine Environmental Research 58, 665-669. Holdway D, Lok K, Semann M. 2001. The acute and chronic toxicity of cadmium ans zinc to two hydra species. Environ. Toxicol. 16, 557-565 Ivankovic, D., Pavicic, J., Kozar, S., Raspor, B. 2002. Helgoland Marine Research 56,95-101- 27 - Kägi, J.H.R., Kojima, Y. 1987. Chemistry and biochemistry of metallothioneins. In:metallothionein II (edited by Kägi, J.H.R.; Kojima, Y.), pp. 25-61. Birkhauser-Verlag, Basel Klaassen CD. 2001. Toxicology. Sixth edition. The McGraw-Hill Companies, New York Klaassen, C. D., Liu, J. 1998. Induction of metallothionein as an adaptive mechanism affecting the magnitude and progression of toxicology injury. Environ. Health Perspect.106, 297-300 Kortschak RD, Samuel G, Saint R, Miller DJ. 2003. EST anakysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in model invertebrates. Curr Biol.14, 106-108 Langston, W.J., Bebianno, M.J., Burt, G.R. 1998. Metal metabolism in Aquatic Environments. Chapman & Hall Lemoine, S., Laulier, M. 2003. Potential use of the levels of the mRNA of a specific metallothionein isoform (MT-20) in mussel (Mytilus edulis ) as a biomarker of cadmium contamination. Mar. Pollut. Bull. 46, 1450-1455 Mackey, E., Overnell, J., Dumbar, B., Davidson, I., Hunziger, P.E., Kägi, J.H.R., Fothergill, J.E. 1993. Complete amino acid sequences of five dimeric and four monomeric forms of metallothionein from the edible mussel Mytilus edulis. Eur. J. Biochem. 218, 183-194 Mantelatto FLM, WEP Avelar, DML Silva,AC Tomazeli, JLC Lopez, T Shuhama. 1999.Heavy metals in the shrimp Xiphopenaeus kroyeri from Ubatuba Bay, Saint Paulo, Brazil. Bull. Environ. Contam. Toxicol. 62, 152-159 Marigómez, I., Soto, M., Cajaraville, M.P., Angulo, E., Giamberini, L. 2002. Cellular and subcellular distribution of metals in mollusks. Micros. Res. Tech. 56, 358-392 Marshall AT, Wright OP. 1993. Confocal laser scanning light microscopy of the extra-thecal epithelia of undecalcified scleractinian corals. Cell Tissue Res 272, 533-543 Marshall, T.A. 2002. Occurrence, Distribution, and Localization of metals in cnidarians.Microscopy research and technique 56, 341-357 Margoshes, M., Vallee, B. L. 1957. A cadmium protein from equine kidney cortex. J. Am.- 28 -Chem. Soc. 79, 4813-4814 Mason, A.Z., Jenkins, K.D. 1995. Metal detoxification in aquatic organisms. In: Tessier, A.,Turner, D.R. (Eds.), Metal Speciation and Bioavailability in Aquatic Systems. Wiley,Chichester, pp. 479-608 Miles, A. T., Hawksworth, G. M., Beattie, J. H., Rodilla, V. 2000. Induction, regulation degradation, and biological significance of mammalian metallothioneins. Crit. Rev. Biochem. Mol. Biol. 35, 35-70 Mouneyrac, C., Amirad-Triquet, C., Amirad, J.C., Rainbow, P.S. 2001. Comparison of metallothionein concentrations and tissue distributions of trace metals in crabs (Pachygrapsus marmoratus) from a metal-rich estuary, in or out of the reproductive period.Comp. Biochem. Physiol. C 129, 193-209 Ng, T.Y.T., Wang, W.-X. 2004. Detoxification and effects of Ag, Cd, and Zn pre-exposure on metal uptake kinetics in the clam Ruditapes philippinarum. Mar. Ecol. Prog. Ser. 268,161-172. Nordberg, M. 1998. Metallothionein: historical review and state of knowledge. Talanta 46,243-254 Olsson, P.E., Zafarullah, M., Foster, R., Hamor, T., Gedamu, L. 1990. Developmental regulation of metallothionein mRNA, zinc and copper levels in rainbow trout, Salmo gairdneri. Eur. J. Biochem. 193, 229-235 Paez-Osuna F, Ruiz-Fernandez,C. 1995. Trace metals in Mexican shrimp Panaeus vannamei from esturine and marine environments. Environ. Pollut. 87, 243-247 Paez-Osuna F., Tron-Mayen, L. 1996. Concentration and distribution of heavy metals in tissues of wild and farmed shrimp Panaeus vannamei from the northwest coast of Mexico. Environ. Int. 22, 443-450 ⣷14; Palmiter, R.D. 1994. Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc. Natl. Acad. Sci. U.S.A. 91, 1219-1223 Pederson SN, Lundebye, A-K., Depledge, MH. 1997. Field application of metallothionein- 29 - and stress protein biomarkers in the shore crab Carcinus maenas exposed to trace metals. Aquat. Toxicol. 37, 183-200 ⣷14; Rainbow, P.S., Amiard-Triquet, C., Amiard, J.C., Smith, B.D., Best, S.L., Nassiri, Y.,Langston, W.J. 1999. Trace metal uptake rates in crustaceans (amphipods and crabs) from coastal sites in NW Europe differentially enriched with trace metals. Mar. Ecol. Prog. Ser.183, 189-203 ⣷14; Roesijadi G., Klerks, PL. 1989. Kinetic analysis of cadmium binding to metallothionein and other intracellular ligands in oyster gills. J. Exp. Zool. 251, 1-12 ⣷14; Roesijadi, G. 1992. Metallothioneins in metal regulation and toxicity in aquatic animals.Aquatic. Toxicol. 22, 81-114 ⣷14; Roesijadi, G. 1994. Metallothionein induction as a measure of response to metal exposure in aquatic animals. Environ. Health. Perspect. 102, 91-96 ⣷14; Roesijadi, G. 1996. Metallothionein and its role in toxic metal regulation. Comp. Biochem.Physiol. C 113(2), 117-123 ⣷14; Scudiero, R., Carginale, V., Riggio, M., Capasso, C., Capasso, A., Kille. P., Di Prisco, G.,Parisi, E. 1997. Difference in hepatic metallothionein content in antartic red-blooded and haemoglobinless fish is accompanied by accumulation of untranslated metallothionein mRNA. Biochemical Journal 322, 207-211 ⣷14; Scudiero, R., Verde, C., Carginale, V., Kille, P., Capasso, C., Di Prisco, G., Parisi, E. 2000. Tissue specific regulation of metallothionein and metallothionein mRNA accumulation in the Antartic notothenioid, Notothenia coriiceps. Polar Biology 23, 17-23 ⣷14; Soegianto A, Charmantier-Daures, M., Trilles, J., Charmantier, G. 1999a. Impact of cadmium on the structures of gills and epipodites of the shrimp Paenaeus japonicus (Crustacea: Decapoda). J. Crust. Biol. 19, 209-223 ⣷14; Świergosz-Kowalewska, R., Bednarska, A., Kafel, A. 2006. Glutathione levels and enzyme activity in the tissues of bank vole Clethrionomys glareolus chronically exposed to a mixture of metal contamiants. Chemosphere 65, 963-974 ⣷14; Świergosz-Kowalewska, R., Bednarska, A., Callaghan, A., 2007. Expression of- 30 -Metallothionein Genes I and II in Bank Vole Clethrionomys glareolus Populations Chronically Exposed In situ to heavy metals. Environ. Sci. Technol. 41, 1032-1037 ⣷14; Tanguy, A., Mura, C., Moraga, D. 2001. Cloning of a metallothionein gene and characterization of two other cDNA sequences in the Pacific oyster Crassostrea gigas (CgMT-1). Aquat. Toxicol. 55, 35-47 ⣷14; Tanguy, A., Moraga, D. 2001. Cloning and characterization of a gene coding for a novel metallothionein in the Pacific oyster, Crassostrea gigas (CgMT-2): a case of adaptive response to metal-induced stress? Gene 273, 123-130 ⣷14; Tanguy, A., Boutet, I., Bonhomme, F., Boudry, P., Moraga, D. 2002. Polymorphism of metallothionein genes in the Pacific oyster Crassostrea gigas as a biomarker of response to metal exposure. Biomarker 7 (6), 439-450 ⣷14; Tarrant, M.A. 2007. Hormonal signaling in cnidarians: do we understand the pathways well enough to know whether they are being disrupted? Ecotoxicology 16, 5-13 ⣷14; Turoczy, NJ., Mitchell, BD., Levings, AH., Rajendram. VS. 2001. Cadmium, copper, mercury, and zinc concentrations in tissues of the king crab Pseudocarcinus gigas from southwest Australian waters. Environ. Int. 27: 327-334 ⣷14; Vanegas, C., Espina, S., Botello, AV., Villanueva, S. 1997. Acute toxicity and synergism of cadmium and zinc in white shrimp Penaeus setiferus juveniles. Bull. Environ. Contam. Toxicol. 58, 87-92 ⣷14; Van Cleef-Toedt, K.A., Kaplan, L.A.E., Crivello, J.F. 2000. Metallothionein mRNA expression in spawning and non-spawning Fundulus heteroclitus following acute exposure to starvation and waterborne cadmium. Fish Physiology and Biochemistry 22, 319–327. ⣷14; Vasak, M. 1991. Metal removal and substitution in vertebrate and invertebrate metallothioneins. In: Riodan, J.F., Vallee, B.L. (Eds.), Methods in Enzymology Metallochemistry B 205, 452-458 ⣷14; Vasak, M., Hasler, D.W. 2000. Metallothioneins: news functional and structural insights.Current Opinion in Chemical Biology 4, 177-183 ⣷14; Verdugo P. 1990. Goblet cells secretion and mucogenesis. Annu Rev Physiol. 52, 157–176. ⣷14; Viarengo, A., Pertica, M., Mancunelli, G., Capelli, R., Orunesu, M. 1980. Mar. Environ. Res.4, 145-152 ⣷14; Wallace, W.G., Lopez, G.R. 1996. Relationship between subcellular cadmium distribution in prey and cadmium trophic transfer to a predator. Estuaries 19, 923-930 ⣷14; Wallace, W.G., Lopez, G.R., Levinton, J.S. 1998. Cadmium resistance in an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp. Mar. Ecol. Prog. Ser. 172,225–237 ⣷14; Wang, W-X., Fisher, N.S., Luoma, S.N. 1996. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Mar. Ecol. Prog. Ser. 140, 91-113 ⣷14; Wang, W-X, Wong, R.S.K. 2003. Combined effects of food quantity and quality on Cd, Cr,and Zn assimilation to the green mussels, Perna viridis. J. Exp. Mar. Biol. Ecol. 290, 49-69 ⣷14; Wang, W-X., Rainbow, S.P. 2005. Influence of metal exposure history on trace metal uptake and accumulation by marine invertebrates. Ecotoxicology and Environmental Safety 61,145-159 ⣷14; Wells, P., Lee, K., Blaise, C. 1997. Microscale testing in aquatic toxicology – advances,techniques and practice. CRC/Lewis Press, Boca Raton, FL. ⣷14; Zyadah, MA, Abdel-Baky, TE. 2000. Toxicity and bioaccumulation of copper, zinc, and cadmium in some aquatic organisms. Bull. Environ. Contam. Toxicol. 64, 740-747 ⣷14; Zaroogian, G., Jackim, E. 2000. In vivo metallothionein and glutathione status in an acute response to cadmium in Mercenaria mercenaria brown cells. Comp. Biochem. Physiol. C127, 251-261
_version_ 1766171711617630208
spelling ftntaiwanuniv:oai:140.112.114.62:246246/56679 2023-05-15T18:02:03+02:00 重金屬鋅或鎘誘發海葵(Aiptasia pulchella)體內金屬硫蛋白之研究 The induction of metallothioneins by zinc or cadmium in sea anemones, Aiptasia pulchella 黃嘉儀 Huang, Chia-I 陳俊宏 臺灣大學:動物學研究研究所 2007 4667568 bytes application/pdf http://ntur.lib.ntu.edu.tw/handle/246246/56679 http://ntur.lib.ntu.edu.tw/bitstream/246246/56679/1/ntu-96-R94b41030-1.pdf en-US en_US eng Amiard, J.-C, Amiard-Triquet, C., Barka, S., Pellerin, J., Rainbow, P.S. 2006.Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat. Toxicol. 76, 160-202 Andrews, G.K. 2000. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem. Pharmacol. 59, 95-104 Barka, S., Pavillon, J.-F., Amiard, J.-C. 2001. Influence of different essential and non-essential metals on MTLP levels in the copepod Tigriopus brevicornis Comp. Biochem.Physiol. C 128, 479-493 Baudrimont, M., Andres, S., Metivaud, J., Lapaquellerie, Y., Ribeyre, F., Maillet, N.,Latouche, C., Boudou, A. 1999. Field transplantation of the freshwater bivalve Corbicula fluminea along a polymetallic contamination gradient (river lot, France): II.Metallothionein response to metal exposure. Environ. Toxicol. Chem. 18, 2472-2477 Blaise, C., Kusui, T. 1997. Acute Toxicity assessment of industrial effluents with a microplate-based Hydra attenuata assay. Environ. Toxicity Water Qual. 12, 53-60 Bourdineaud, J.-P., Baudrimont, M., Gonzalez, P., Moreau, J.-L. 2006. Challenging the model for induction of metallothionein gene expression. Biochimie 88, 1787-1792 Bebianno, M.J., Serafim, M.A. 2003. Variation of metal and metallothionein concentrations in a natural population of Ruditapes decussates. Arch. Environ. Contam. Toxicol. 44, 53-66 Binz, P.A., Kägi, J.H.R. 1999. Metallothionein: molecular evolution classification. In:Klaassen C. (Ed.), Metallothionein IV. Birkhäuser Verlag, Basel, 7-13 Boutet, I., Tanguy, A., Auffret, M., Riso, R., Moraga, D., 2002. Immunochemical quantification of metallothioneins in marine mollusks: Characterization of a metal exposure bioindicator. Environ. Toxicol. Chem. 21(5), 1009-1014. Brown B, Howard S., 1985a. Responses of coelenterates to trace metals: a field and laboratory evaluation. In: Fifth International Coral Reef Congress, Tahiti, Antenne Museum-EPHE, Moorea, French Polynesia. 465-470 - 25 - Bryan GW., 1976. Heavy metal contamination in the sea. In: Johnston R (Eds.). Marine Pollution. Academic Press, New York, USA, 185-302 Burgeot, T., Bocquen´e, G., Pingray, G., Godeffroy, D., Legrand, J., Dimeet, J., Marco, F.,Vincent, F., Henocque, Y., Oger-Jenneret, H., Galgani, F. 1994. Monitoring biological effects of contamination in marine fish along French coasts by measurement of ethoxyresorufin-O-deethylase activity. Ecotox. Environ. Saf. 131, 131–147 Butler, R.A., Roesijadi, G., 2001. Quantitative reverse transcription polymerase chain reaction of a molluscan metallothionein mRNA. Aquat. Toxicol. 54, 59-67 Canli, M., Stagg, R.M., Rodger, G., 1997. The induction of metallothionein in tissues of the Norway lobster (Nephrops norvegicus) and effects of cadmium, copper and zinc exposures on levels of the metal bound on metallothioneins. Tr. J. Zool. 19, 313-321 Carginale, V., Scudiero, R., Capasso, C., Capasso, A., Kille, P., Prisco, di. G., Parisi, E., 1998. Cadmium- induced differential accumulation of metallothionein isoforms in the Antarctic icefish, which exhibits no basal metallothionein protein but high endogenous mRNA levels. Biochem. J. 332, 475-481 Chapman, G.A., Kay, J., Kille, P., 1999. Structural and functional analysis of the rat metallothionein III genomic locus. Biochin. Biophys. Acta 1445, 32-329 ⣷14; Cheung, M.-S., Wang, W.-X., 2005. Influences of subcellular metal compartmentalization on the transfer to a predatory gastropod from different prey. Mar. Ecol. Prog. Ser. 286, 155-166 Chua, TE., 1992. Coastal aquaculture development and the environment: the role of coastal area management. Mar. Pollut. Bull. 25, 98-103 Coyle, P., Philcox, J.C., Carey, L.C., Rofe, A.M., 2002. Metallothionein: the multipurpose protein. Cellular and Molecular Life Sciences 59, 627-647 Dallinger, R., 1996. Metallothionein research in terrestrial invertebrates: synopsis and perspectives. Comp. Biochem. Physiol., C 113, 1250-1303 Davis, S. R.; Cousins, R. J., 2000. Metallothionein expression in animals: a physiological perspective on function. J. Nutr. 130, 1085-1088- 26 - ⣷14; Del, Ramo, J., Torreblanca, A., Martinez, M., Pastor, A., Diaz-Mayans, J. 1995. Quantification of Cadmium-Induced Metallothionein in Crustaceans by the Silver-Saturation Method. Marine Environmental Research 39, 121-125 Eaton, D. L.; Stacey, N. H.; Wong, K. L.; Klaassen, C. D., 1980.Dose-response of effects of various metal ions on rat liver metallothionein, glutathione, heme oxygenese, and cytochrome p-450. Toxicol. Appl. Pharmacol. 55, 393-402 Engelman, J., Hildebrandt, A., 1999. cDNA cloning and cadmium-induced expression of metallothionein mRNA in the zebra mussel Dreissena polymorpha. Biochem. Cell Biol. 77, 237-241 English, T.E., Storey, K.B., 2003. Freezing and anoxia stresses induce expression of metallothionein in the foot muscle and hepatopancreas of the marine gastropod Littorina littorina. J. Exp. Biol. 206, 2517-2524 Frazier, J.M., George, S.G., 1983. Cadmium kinetics in oysters—a comparative study of Crassostrea gigas and Ostrea edulis. Mar. Biol. 76, 55–61. George, S.G. 1982. Subcellular accumulation and detoxification of metals in aquatic animals. In: Vernberg, W.B. (Ed.), Physiological Mechanisms of Marine Pollutants. Academic Press, Oxford, pp. 3-52. Haq, F., Mahoney, M., Koropatnick, J. 2003. Signaling events for metallothionein induction. Mutat. Res. 533, 211-226 Hayes, Ruth A., Regondi, Simona, Winter, Matthew J., Butler, Patrick J., Agradi, Elisabetta,, Taylor, Edwin W., Chipman, Kevin, 2004. Cloning of a chub metallothionein cDNA and development of competitive RT-PCR of chub metallothionein mRNA as a potential biomarker of heavy metal exposure. Marine Environmental Research 58, 665-669. Holdway D, Lok K, Semann M. 2001. The acute and chronic toxicity of cadmium ans zinc to two hydra species. Environ. Toxicol. 16, 557-565 Ivankovic, D., Pavicic, J., Kozar, S., Raspor, B. 2002. Helgoland Marine Research 56,95-101- 27 - Kägi, J.H.R., Kojima, Y. 1987. Chemistry and biochemistry of metallothioneins. In:metallothionein II (edited by Kägi, J.H.R.; Kojima, Y.), pp. 25-61. Birkhauser-Verlag, Basel Klaassen CD. 2001. Toxicology. Sixth edition. The McGraw-Hill Companies, New York Klaassen, C. D., Liu, J. 1998. Induction of metallothionein as an adaptive mechanism affecting the magnitude and progression of toxicology injury. Environ. Health Perspect.106, 297-300 Kortschak RD, Samuel G, Saint R, Miller DJ. 2003. EST anakysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in model invertebrates. Curr Biol.14, 106-108 Langston, W.J., Bebianno, M.J., Burt, G.R. 1998. Metal metabolism in Aquatic Environments. Chapman & Hall Lemoine, S., Laulier, M. 2003. Potential use of the levels of the mRNA of a specific metallothionein isoform (MT-20) in mussel (Mytilus edulis ) as a biomarker of cadmium contamination. Mar. Pollut. Bull. 46, 1450-1455 Mackey, E., Overnell, J., Dumbar, B., Davidson, I., Hunziger, P.E., Kägi, J.H.R., Fothergill, J.E. 1993. Complete amino acid sequences of five dimeric and four monomeric forms of metallothionein from the edible mussel Mytilus edulis. Eur. J. Biochem. 218, 183-194 Mantelatto FLM, WEP Avelar, DML Silva,AC Tomazeli, JLC Lopez, T Shuhama. 1999.Heavy metals in the shrimp Xiphopenaeus kroyeri from Ubatuba Bay, Saint Paulo, Brazil. Bull. Environ. Contam. Toxicol. 62, 152-159 Marigómez, I., Soto, M., Cajaraville, M.P., Angulo, E., Giamberini, L. 2002. Cellular and subcellular distribution of metals in mollusks. Micros. Res. Tech. 56, 358-392 Marshall AT, Wright OP. 1993. Confocal laser scanning light microscopy of the extra-thecal epithelia of undecalcified scleractinian corals. Cell Tissue Res 272, 533-543 Marshall, T.A. 2002. Occurrence, Distribution, and Localization of metals in cnidarians.Microscopy research and technique 56, 341-357 Margoshes, M., Vallee, B. L. 1957. A cadmium protein from equine kidney cortex. J. Am.- 28 -Chem. Soc. 79, 4813-4814 Mason, A.Z., Jenkins, K.D. 1995. Metal detoxification in aquatic organisms. In: Tessier, A.,Turner, D.R. (Eds.), Metal Speciation and Bioavailability in Aquatic Systems. Wiley,Chichester, pp. 479-608 Miles, A. T., Hawksworth, G. M., Beattie, J. H., Rodilla, V. 2000. Induction, regulation degradation, and biological significance of mammalian metallothioneins. Crit. Rev. Biochem. Mol. Biol. 35, 35-70 Mouneyrac, C., Amirad-Triquet, C., Amirad, J.C., Rainbow, P.S. 2001. Comparison of metallothionein concentrations and tissue distributions of trace metals in crabs (Pachygrapsus marmoratus) from a metal-rich estuary, in or out of the reproductive period.Comp. Biochem. Physiol. C 129, 193-209 Ng, T.Y.T., Wang, W.-X. 2004. Detoxification and effects of Ag, Cd, and Zn pre-exposure on metal uptake kinetics in the clam Ruditapes philippinarum. Mar. Ecol. Prog. Ser. 268,161-172. Nordberg, M. 1998. Metallothionein: historical review and state of knowledge. Talanta 46,243-254 Olsson, P.E., Zafarullah, M., Foster, R., Hamor, T., Gedamu, L. 1990. Developmental regulation of metallothionein mRNA, zinc and copper levels in rainbow trout, Salmo gairdneri. Eur. J. Biochem. 193, 229-235 Paez-Osuna F, Ruiz-Fernandez,C. 1995. Trace metals in Mexican shrimp Panaeus vannamei from esturine and marine environments. Environ. Pollut. 87, 243-247 Paez-Osuna F., Tron-Mayen, L. 1996. Concentration and distribution of heavy metals in tissues of wild and farmed shrimp Panaeus vannamei from the northwest coast of Mexico. Environ. Int. 22, 443-450 ⣷14; Palmiter, R.D. 1994. Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc. Natl. Acad. Sci. U.S.A. 91, 1219-1223 Pederson SN, Lundebye, A-K., Depledge, MH. 1997. Field application of metallothionein- 29 - and stress protein biomarkers in the shore crab Carcinus maenas exposed to trace metals. Aquat. Toxicol. 37, 183-200 ⣷14; Rainbow, P.S., Amiard-Triquet, C., Amiard, J.C., Smith, B.D., Best, S.L., Nassiri, Y.,Langston, W.J. 1999. Trace metal uptake rates in crustaceans (amphipods and crabs) from coastal sites in NW Europe differentially enriched with trace metals. Mar. Ecol. Prog. Ser.183, 189-203 ⣷14; Roesijadi G., Klerks, PL. 1989. Kinetic analysis of cadmium binding to metallothionein and other intracellular ligands in oyster gills. J. Exp. Zool. 251, 1-12 ⣷14; Roesijadi, G. 1992. Metallothioneins in metal regulation and toxicity in aquatic animals.Aquatic. Toxicol. 22, 81-114 ⣷14; Roesijadi, G. 1994. Metallothionein induction as a measure of response to metal exposure in aquatic animals. Environ. Health. Perspect. 102, 91-96 ⣷14; Roesijadi, G. 1996. Metallothionein and its role in toxic metal regulation. Comp. Biochem.Physiol. C 113(2), 117-123 ⣷14; Scudiero, R., Carginale, V., Riggio, M., Capasso, C., Capasso, A., Kille. P., Di Prisco, G.,Parisi, E. 1997. Difference in hepatic metallothionein content in antartic red-blooded and haemoglobinless fish is accompanied by accumulation of untranslated metallothionein mRNA. Biochemical Journal 322, 207-211 ⣷14; Scudiero, R., Verde, C., Carginale, V., Kille, P., Capasso, C., Di Prisco, G., Parisi, E. 2000. Tissue specific regulation of metallothionein and metallothionein mRNA accumulation in the Antartic notothenioid, Notothenia coriiceps. Polar Biology 23, 17-23 ⣷14; Soegianto A, Charmantier-Daures, M., Trilles, J., Charmantier, G. 1999a. Impact of cadmium on the structures of gills and epipodites of the shrimp Paenaeus japonicus (Crustacea: Decapoda). J. Crust. Biol. 19, 209-223 ⣷14; Świergosz-Kowalewska, R., Bednarska, A., Kafel, A. 2006. Glutathione levels and enzyme activity in the tissues of bank vole Clethrionomys glareolus chronically exposed to a mixture of metal contamiants. Chemosphere 65, 963-974 ⣷14; Świergosz-Kowalewska, R., Bednarska, A., Callaghan, A., 2007. Expression of- 30 -Metallothionein Genes I and II in Bank Vole Clethrionomys glareolus Populations Chronically Exposed In situ to heavy metals. Environ. Sci. Technol. 41, 1032-1037 ⣷14; Tanguy, A., Mura, C., Moraga, D. 2001. Cloning of a metallothionein gene and characterization of two other cDNA sequences in the Pacific oyster Crassostrea gigas (CgMT-1). Aquat. Toxicol. 55, 35-47 ⣷14; Tanguy, A., Moraga, D. 2001. Cloning and characterization of a gene coding for a novel metallothionein in the Pacific oyster, Crassostrea gigas (CgMT-2): a case of adaptive response to metal-induced stress? Gene 273, 123-130 ⣷14; Tanguy, A., Boutet, I., Bonhomme, F., Boudry, P., Moraga, D. 2002. Polymorphism of metallothionein genes in the Pacific oyster Crassostrea gigas as a biomarker of response to metal exposure. Biomarker 7 (6), 439-450 ⣷14; Tarrant, M.A. 2007. Hormonal signaling in cnidarians: do we understand the pathways well enough to know whether they are being disrupted? Ecotoxicology 16, 5-13 ⣷14; Turoczy, NJ., Mitchell, BD., Levings, AH., Rajendram. VS. 2001. Cadmium, copper, mercury, and zinc concentrations in tissues of the king crab Pseudocarcinus gigas from southwest Australian waters. Environ. Int. 27: 327-334 ⣷14; Vanegas, C., Espina, S., Botello, AV., Villanueva, S. 1997. Acute toxicity and synergism of cadmium and zinc in white shrimp Penaeus setiferus juveniles. Bull. Environ. Contam. Toxicol. 58, 87-92 ⣷14; Van Cleef-Toedt, K.A., Kaplan, L.A.E., Crivello, J.F. 2000. Metallothionein mRNA expression in spawning and non-spawning Fundulus heteroclitus following acute exposure to starvation and waterborne cadmium. Fish Physiology and Biochemistry 22, 319–327. ⣷14; Vasak, M. 1991. Metal removal and substitution in vertebrate and invertebrate metallothioneins. In: Riodan, J.F., Vallee, B.L. (Eds.), Methods in Enzymology Metallochemistry B 205, 452-458 ⣷14; Vasak, M., Hasler, D.W. 2000. Metallothioneins: news functional and structural insights.Current Opinion in Chemical Biology 4, 177-183 ⣷14; Verdugo P. 1990. Goblet cells secretion and mucogenesis. Annu Rev Physiol. 52, 157–176. ⣷14; Viarengo, A., Pertica, M., Mancunelli, G., Capelli, R., Orunesu, M. 1980. Mar. Environ. Res.4, 145-152 ⣷14; Wallace, W.G., Lopez, G.R. 1996. Relationship between subcellular cadmium distribution in prey and cadmium trophic transfer to a predator. Estuaries 19, 923-930 ⣷14; Wallace, W.G., Lopez, G.R., Levinton, J.S. 1998. Cadmium resistance in an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp. Mar. Ecol. Prog. Ser. 172,225–237 ⣷14; Wang, W-X., Fisher, N.S., Luoma, S.N. 1996. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Mar. Ecol. Prog. Ser. 140, 91-113 ⣷14; Wang, W-X, Wong, R.S.K. 2003. Combined effects of food quantity and quality on Cd, Cr,and Zn assimilation to the green mussels, Perna viridis. J. Exp. Mar. Biol. Ecol. 290, 49-69 ⣷14; Wang, W-X., Rainbow, S.P. 2005. Influence of metal exposure history on trace metal uptake and accumulation by marine invertebrates. Ecotoxicology and Environmental Safety 61,145-159 ⣷14; Wells, P., Lee, K., Blaise, C. 1997. Microscale testing in aquatic toxicology – advances,techniques and practice. CRC/Lewis Press, Boca Raton, FL. ⣷14; Zyadah, MA, Abdel-Baky, TE. 2000. Toxicity and bioaccumulation of copper, zinc, and cadmium in some aquatic organisms. Bull. Environ. Contam. Toxicol. 64, 740-747 ⣷14; Zaroogian, G., Jackim, E. 2000. In vivo metallothionein and glutathione status in an acute response to cadmium in Mercenaria mercenaria brown cells. Comp. Biochem. Physiol. C127, 251-261 金屬硫蛋白 海葵 鋅 鎘 誘發性 免疫組織染色 metallothionein sea anemone Aiptasia pulchella zinc cadmium thesis 2007 ftntaiwanuniv 2016-02-20T00:04:05Z 金屬硫蛋白 (Metallothionein, MT)是一種含有大量cysteine、耐熱的小分子量蛋白質。這種蛋白質已經被證實可以和重金屬連結,除了可以調控多餘的必需重金屬鋅或銅外,若是有非必需的重金屬(鎘或汞)進入生物體內,金屬硫蛋白可與這些金屬離子結合,作為解毒機制的一環。從之前的文獻知道,metallothionein具有作為生物指標的潛力。本實驗的實驗動物,海葵Aiptasia pulchella 容易飼養並具有無性生殖的特性,可減少實驗中的個體差異。將實驗動物暴露在不同濃度的鋅溶液 (0, 0.25, 0.5 或1.0 mg/L) 24, 48 或96小時 以及不同濃度的鎘溶液(0, 0.05 ,0.25 或 0.5 mg/L) 24, 48 或72 小時,海葵的外型會有顯著的變化:身體和觸手會縮小,並且會有變黑的情形發生。在檢測海葵組織內重金屬的濃度,可以發現組織內重金屬的濃度會隨著處理時間或是重金屬濃度的增加而增加。透過抗體辨識發現海葵的metallothionein的分子量應該位在11~17 kDa之間,主要表現的至少有三種不同大小的蛋白質,推測其中之一應該為constitutive metallothionein;另外的為誘發性的metallothionein。誘發性的metallothionein的量會隨著暴露的時間以及金屬濃度增加,其表現量會有增加的趨勢。根據免疫組織染色的結果,Metallothionein在海葵體內呈現不均勻分佈。當暴露在較高濃度的鋅或鎘溶液中,身體部分的亮點會明顯增加;顯示metallothionein在身體部位呈點狀且較均勻地分佈。 Metallothioneins (MTs) are cysteine rich, heat stable and low molecular weight proteins. They have been widely used as biomarkers to reflect the level of heavy metal pollution. Sea anemones (Aiptasia pulchella) should reflect the real condition of its surroundings due to its sedentary. Normally, they are asexually reproduced by pedal laceration in laboratory cultural system. After exposure to different concentrations of cadmium (0, 0.05, 0.25 or 0.5 mg/L for 24, 48 or 72 hours) or zinc (0, 0.25, 0.5 or 1.0 mg/L for 24, 48 or 96 hours), obvious morphological alterations in A. pulchella were recorded. Their tentacles turned dark and their body shrank. By using atomic absorption to measure Zn or Cd concentration in A. pulchella, those metal-exposed sea anemones showed a time-dependent and a dose-dependent both zinc and cadmium accumulation. From the results of immunoblotting, the amount of metallothioneins in those metal-exposed A. pulchella increased following by a time-and dose-course. The molecular weight of the detected MTs was between 11 and 17 kDa. There were at least three bands appeared. One is assumed to be constitutive MT and the others are assumed to be induced metallothioneins. Immunofluorecent antibody detection of the distribution of metallothionein in A. pulchella under zinc or cadmium treatment demonstrated that the fluorescent particles in the body column significantly increased and the fluorescence of tentacles also intensified. The induction of metallothioneins in A. pulchella was shown being responsive to different concentrations of metals. Contents 口試委員審定書 --- i Abstract (English) --- ii Abtract (Chinese) --- iii 1. Introduction 1.1. Characteristics of metallothioneins --- 1 1.2. Heavy metals --- 3 1.3. Heavy metal pollution in the coastal areas --- 4 1.4. Cnidarians and heavy metals --- 5 1.5. Metallothionein isoforms --- 6 1.6 Toxicity assessment --- 7 2. Materials and Methods 2.1. Animals --- 10 2.2. Zn or Cd exposure --- 10 2.3. Measurement of heavy metal bioaccumulation --- 11 2.4. Partial purification of Metallothionein --- 11 2.5. SDS-PAGE --- 12 2.6. Immunoblotting --- 12 2.7. Immunohistochemistry --- 13 2.8. Statistics --- 14 3. Results 3.1. Morphological change after exposure to zinc and cadmium --- 15 3.2. Bioaccumulation in A. pulchella --- 15 3.3. Electrophoretic studies --- 16 3.4. Immunoblotting --- 17 3.5. Immunohistochemistry (IHC) --- 17 4. Discussion --- 18 5. References --- 24 FIGURES AND TABLES Fig 1. Morphological change after Zinc exposure --- 32 Fig 2. Morphological change after Cadmium exposure --- 34 Fig 3. Bioaccumulation of Zinc in Aiptasia pulchella --- 36 Fig 4. Bioaccumulation of Cadmium in Aiptasia pulchella --- 37 Fig 5. One-dimensional SDS-PAGE after Zinc exposure --- 38 Fig 6. One-dimensional SDS-PAGE after Cadmium exposure --- 40 Fig 7. Immunoblotting of Metallothionein in A. pulchella after Zinc exposure --- 42 Fig 8. Immunoblotting of Metallothionein in A. pulchella after Cadmium exposure --- 43 Fig 9. Metallothionein distribution in A. pulchella after Zinc exposure --- 44 Fig 10. Metallothionein distribution in A. pulchella after Cadmium exposure --- 49 Table 1. Zinc concentration in tissues of A. pulchella --- 54 Table 2. Cadmium concentration in tissues of A. pulchella --- 55 Thesis Polar Biology National Taiwan University Institutional Repository (NTUR)