颱風對翡翠水庫葉綠素甲濃度時空變化之影響
為瞭解影響翡翠水庫水體中葉綠素甲(Chl a)時空變化之控制機制以及颱風的效應 ,本研究於2004年2月至次年4月期間,在翡翠水庫大壩站(週採樣)及水庫上至下游 縱走測線(月採樣)測量水溫、Chl a、非活性葉綠素甲(Phae a)及其比值(PhR=Phae a/(Phae a+Chl a) )、總懸浮物質量(TSM)及可溶性反應磷(SRP)濃度。並在颱風過後進 行密集採樣。結果發現,在深度分布上,Chl a 濃度表水高底水低,最高值常在5m水 深處。水平分布上則為上游高下游低。在時間分布上,大壩站Chl a10 m積分平均值 (IChl a10m)最高值出現於秋季(5.2 mg L-1),最...
Main Authors: | , |
---|---|
Other Authors: | , |
Format: | Thesis |
Language: | Chinese English |
Published: |
2005
|
Subjects: | |
Online Access: | http://ntur.lib.ntu.edu.tw/handle/246246/56612 http://ntur.lib.ntu.edu.tw/bitstream/246246/56612/1/ntu-94-R92241213-1.pdf |
id |
ftntaiwanuniv:oai:140.112.114.62:246246/56612 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
National Taiwan University Institutional Repository (NTUR) |
op_collection_id |
ftntaiwanuniv |
language |
Chinese English |
topic |
颱風 葉綠素 葉綠素甲 翡翠水庫 紊流模式 typhoon chlorophyll chlorophyll a Fei-Tsui Resvoir turbulence model |
spellingShingle |
颱風 葉綠素 葉綠素甲 翡翠水庫 紊流模式 typhoon chlorophyll chlorophyll a Fei-Tsui Resvoir turbulence model 林靜英 Lin, Ching-Ying J. 颱風對翡翠水庫葉綠素甲濃度時空變化之影響 |
topic_facet |
颱風 葉綠素 葉綠素甲 翡翠水庫 紊流模式 typhoon chlorophyll chlorophyll a Fei-Tsui Resvoir turbulence model |
description |
為瞭解影響翡翠水庫水體中葉綠素甲(Chl a)時空變化之控制機制以及颱風的效應 ,本研究於2004年2月至次年4月期間,在翡翠水庫大壩站(週採樣)及水庫上至下游 縱走測線(月採樣)測量水溫、Chl a、非活性葉綠素甲(Phae a)及其比值(PhR=Phae a/(Phae a+Chl a) )、總懸浮物質量(TSM)及可溶性反應磷(SRP)濃度。並在颱風過後進 行密集採樣。結果發現,在深度分布上,Chl a 濃度表水高底水低,最高值常在5m水 深處。水平分布上則為上游高下游低。在時間分布上,大壩站Chl a10 m積分平均值 (IChl a10m)最高值出現於秋季(5.2 mg L-1),最低值出現於冬季(0.24 mg L-1);全年平均值 為2.3 ± 1.2 mg L-1。複迴歸分析顯示,與IChl a10m全年變異相關之因子為水溫及PhR( 可代表浮游動物攝食或浮游植物本身凋萎作用之強度)。颱風季(8~12月)時除上述二因 子外,另需加入TSM。冷季(12月~次年3月)時,IChl a10m僅與SRP相關。在颱風或 暴雨事件過後,水庫中下水層(約水下20~80 m)出現次表層懸浮物團狀物(SSMP),而 其上方水體內Chl a 濃度隨之升高,且Chl a 次表層極大值(SCM)所在深度有向下發展 之情形。數據分析顯示TSM 與SRP具正相關,表示SSMP能供應磷酸鹽,可能是水 庫颱風季出現Chl a高濃度值重要成因之一。數值模擬分析結果顯示夏季水溫層化強 烈時,颱風之強風仍無法將深水層所含之物質帶入上層水體;但在秋末因水溫層化微 弱,颱風則可有效地增加混合層的深度,使深水層所含物質進入上層水體。此結果說 明,夏季大壩站表水若出現高SRP或高Chl a濃度值,應來自於水庫上游的橫向輸送 。夏季颱風所引發之SSMP若積存於水庫內,則會因秋颱或冬季的寒潮暴發而進入表 水,而影響秋季及次年春季藻華的嚴重程度。 The propose of this research is to study on the temporal-spatial variation of chlorophyll a concentrations in the Fei-Tsui Reservoir and the mechanism of how typhoons impact on it. The surface water temperature (ST), chlorophyll a (Chl a), phaeopigments a (Phae a) ratio (PhR= Phae a/(Phae a+Chl a)), total suspended matters (TSM) and soluble reactive phosphorus (SRP) have been measured in the Fei-Tsui Reservior from 2004 Feb to 2005 Apr, especially made high frequent sampling after typhoons. The result during the researching period told that the vertical distribution of Chl a concentrations was higher at the surface but lower at the bottom. The highest Chl a concentrations often located at 5m depth of water. The horizontal distribution of the Chl a concentrations was higher in the upstream but lower in the downstream. About the temporal distribution, the average of integrated Chl a concentrations above 10m (IChl a10m) had the highest value in autumn (5.2 mg L-1) and the lowest in winter (0.24 mg L-1). For its annual average value was 2.3 ± 1.2 mg L-1. The multiple regression analysis shows that the change of IChl a10m during research is related with ST and PhR (indicated the grazing of the zooplankton or the descending of the phytoplankton). The term TSM is considered with IChl a10m during typhoon season from Aug to Dec. The term SRP reveals related with IChl a10m only during cold season from Dec to next Mar. After typhoon or heavy rain, high TSM turbidity current was presented in the middle and bottom water (about 20~80m water depth) of the reservoir; the Chl a concentrations rose at the upper water body of the turbidity current, which the depth of subsurface chlorophyll maxima appeared deeper. The data analysis shows that TSM is iii positive related with SRP. That indicates the turbidity current can be a source of phosphate. It could be one reason of why the high Chl a concentrations presents during the typhoon season. The numerical model analysis shows that the strong breeze of typhoon can’t draw the material of deep water up because the water temperture stratification is so strong in summer. But the stratification is weaker in the late autumn that typhoon can make the mixing layer deeper efficaciously and causes the material of deep water is brought into upper water body. As these results point out, if the SRP or Chl a concentrations reveal high value in summer, the input should come from upstream. If the high TSM and SRP water induced by summer typhoon accumulates in the reservoir, it will mix with surface water causing by the typhoon in autumn or surge in winter and will affect the magnitude of the bloom in this autumn or next spring. 目 錄 中文摘要 i 英文摘要 ii 誌謝 iv 目錄 v 表目錄 vi 圖目錄 vii 序論 1 材料與方法 4 結果 7 討論 16 結論 23 參考文獻 24 表列 27 圖列 29 附錄一.翡翠水庫1987~2004年各月份表水葉綠素平均值圖 42 附錄二.2004年8月至2005年4月螢光探針測值與手測值相關性 42 附錄三.總懸浮物質量與濁度間的關係 43 附錄四.群聚呼吸率 44 附錄五.葉綠素甲及相關色素沈降速率 45 |
author2 |
戴昌鳳 臺灣大學:海洋研究所 |
format |
Thesis |
author |
林靜英 Lin, Ching-Ying J. |
author_facet |
林靜英 Lin, Ching-Ying J. |
author_sort |
林靜英 |
title |
颱風對翡翠水庫葉綠素甲濃度時空變化之影響 |
title_short |
颱風對翡翠水庫葉綠素甲濃度時空變化之影響 |
title_full |
颱風對翡翠水庫葉綠素甲濃度時空變化之影響 |
title_fullStr |
颱風對翡翠水庫葉綠素甲濃度時空變化之影響 |
title_full_unstemmed |
颱風對翡翠水庫葉綠素甲濃度時空變化之影響 |
title_sort |
颱風對翡翠水庫葉綠素甲濃度時空變化之影響 |
publishDate |
2005 |
url |
http://ntur.lib.ntu.edu.tw/handle/246246/56612 http://ntur.lib.ntu.edu.tw/bitstream/246246/56612/1/ntu-94-R92241213-1.pdf |
genre |
Arctic |
genre_facet |
Arctic |
op_relation |
Baldia SF, Conaco MCG, Nishijima T, Imanishi S, Harada KI (2003) Microcystin production during algal bloom occurrence in Laguna de Bay, the Philippines. Fisheries Sci 69: 110~116 Chen F, Annan JD (2000) The influence of different turbulence schemes on modelling primary production in a 1d coupled physical-biological model. J Marine Syst 26: 259~288 Cooke GD, Welch EB, Peterson SP, Newroth P (1993) Restoration and management of lakes and reservoirs. 2nd ed , Boca Raton, Fla.: Lewis Publishers Dobrzyn P, Keck A, Tatur A (2005) Sedimentation of chlorophylls in an arctic fjord under freshwater discharge. Hydrobiologia 532: 1~8 Downs JN, Lorenzen CJ (1985) Carbon : pheopigment ratios of zooplankton fecal pellets as an index of herbivorous feeding. Limnol Oceanogr 30: 1024~1036 Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282: 677~680 Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. J Cons Perm Int Explor Mer 30: 3~15 Holm-Hansen O, Riemann B (1978) Chlorophyll a determination - improvements in methodology. Oikos 30: 438~447 Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167: 191~194 Kim B, Choi K, Kim C, Lee UH, Kim YH (2000) Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea. Wat Res 34: 3495~3504 Koeve W, Pollehne F, Oschlies A, Zeitzschel B (2002) Storm-induced convective export of organic matter during spring in the northease Atlantic Ocean. Deep-Sea Res I 49: 1431~1444 Lorenzen CJ (1967) Vertical distribution of chlorophyll and phaeo-pigments - Baja California. Deep-Sea Res 14: 735~745 Lorenzen CJ, Welschmeyer NA (1983) Sinking rate of organic particles. Limnol Oceanogr 28: 766~769 Lorenzen CJ, Downs JN (1986) The specific absorption-coefficients of chlorophyllide-a and pheophorbide-a in 90-percent acetone, and comments on the fluorometric-determination of chlorophyll and pheopigments. Limnol Oceanogr 31: 449~452. Mellor GL, Yamada T (1982) Development of a turbulence closure-model for geophysical fluid problems. Rev Geophys 20: 851~875 Pai SC, Yang CC, Riley JP (1990) Effect of acidity and molybdate concentration on the kinetic of the formation of the phosphoantimonylmolybdenum blue complex. Anal Chim Acta 299: 115~120 Peierls BL, Christian RR, Paerl HW (2003) Water quality and phytoplankton as indicators of hurricane impacts on a large estuarine ecosystem. Estuaries 26: 1329~1343 Robarts RD, Waiser MJ, Hadas O, Zohary T, MacIntyre S (1998) Relaxation of phosphorus limitation due to typhoon-induced mixing in two morphologically distinct basins of Lake Biwa, Japan. Limnol Oceanogr 43: 1023~1036 Shiah FK, Chung SW, Kao SJ, Gong GC, Liu KK (2000) Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait. Conti Shelf Res 20: 2029~2044 Strickland JDH, Parsons TR (1968) A practical Handbook of Seawater Analysis. Bulletin (Fisheries Research Board of Canada) no. 167, Ottawa: Queen's Printer Sonzogni WC, Chapra SC, Armstrong DE, Logan TJ (1982) Bioavailability of phosphorus inputs to lakes. J Environ Qual 11: 555~563. Weiss CM (1969) Relation of phosphates to eutrophication. Journal AWWA 61: 387~391 Wetzel RG (2001) Limnology - Lake and river ecosystems. San Diego: Academic Press 王泰盛、范誠偉、李宗祐、陳莉、高樹基 (2005)水庫季節性翻轉與卡爾森優養指標--以翡翠水庫為例,台灣集水區(含水庫)環境之物理--生地化水文與永續管理研討會論文集,p.69 白書禎 (1989~1991) 翡翠水庫垂直結構季節性變化檢測與監測,翡翠水庫管理局 白書禎、張淑惠、蘇宗德、郭廷瑜、林瑞廷、李延財、曾婉綢 (1999) 翡翠水庫水體各種渾濁指標之應用與濁度之時序變化,中華民國環境保護學會會誌,第二十二卷,第二期,p.85~96. 白書禎 (2002) 翡翠水庫營養鹽儲量與通量變化之研究,2002海洋科學成果發表會論文摘要集,p.211~213 李珮璇 (2001) 暴雨沖刷初期對水源水質衝擊之評估,國立台北科技大學環境規劃與管理研究所碩士論文 吳俊宗 (1987) 翡翠水庫藻類相調查及水質指標之建立研究報告,翡翠水庫管理局 吳俊宗、高麗珠、黃文亞 (2002) 翡翠水庫藻類與水質關係之長期監測(II)成果報告,翡翠水庫管理局 林文隆 (1993) 水庫湖泊磷內部負荷之模式推估,國立交通大學環境工程研究所碩士論文 林明郁 (2004) 翡翠水庫藻類族群結構分析及分層系統動態模擬,國立臺灣大學環境工程研究所碩士論文 張穗蘋 (1995) 水庫蓄水初期內部營養鹽貢獻對水庫水質之影響,國立成功大學環境工程學系博士論文 曾于芳 (2005) 翡翠水庫浮游生物鹼性磷酸酶活性分析,台灣集水區(含水庫)環境之物理-生地化水文與永續管理研討會論文集,p.70 詹森、陳慶生、王胄 (1992) 淺海地區垂直擴散受隨度分層影響之初步探討,中華民國第十四屆海洋工程研討會論文集,p.194~203 廖文蓓 (2001) 翡翠水庫中藻類種群消長之動態模擬,國立臺灣大學環境工程研究所碩士論文 蔡明昊 (2001) 德基水庫不同位址底、土壤與水質之關係,國立中興大學土壤環境科學系碩士論文 引用資料站點 93年翡翠水庫操作運轉資料http://w2.feitsui.gov.tw/opr/93-opr.pdf 中央氣象局--歷史颱風http://61.56.13.9/data2.php 經濟部水利署水文水資源資料管理供應系統http://gweb.wra.gov.tw/wrweb/ 翡翠水庫運用要點http://www.wra.gov.tw 翡翠水庫運用規線http://wwwsys.wra.gov.tw/uploadlaw/附圖一.pdf 翡翠水庫歷年水文資料http://w2.feitsui.gov.tw/opr/waterdata2.htm |
_version_ |
1766302626948841472 |
spelling |
ftntaiwanuniv:oai:140.112.114.62:246246/56612 2023-05-15T14:28:28+02:00 颱風對翡翠水庫葉綠素甲濃度時空變化之影響 Typhoon Impacts on the Temporal-spatial Variation of Chlorophyll a Concentrations in the Fei-Tsui Reservoir 林靜英 Lin, Ching-Ying J. 戴昌鳳 臺灣大學:海洋研究所 2005 1996984 bytes application/pdf http://ntur.lib.ntu.edu.tw/handle/246246/56612 http://ntur.lib.ntu.edu.tw/bitstream/246246/56612/1/ntu-94-R92241213-1.pdf zh-TW en_US chi eng Baldia SF, Conaco MCG, Nishijima T, Imanishi S, Harada KI (2003) Microcystin production during algal bloom occurrence in Laguna de Bay, the Philippines. Fisheries Sci 69: 110~116 Chen F, Annan JD (2000) The influence of different turbulence schemes on modelling primary production in a 1d coupled physical-biological model. J Marine Syst 26: 259~288 Cooke GD, Welch EB, Peterson SP, Newroth P (1993) Restoration and management of lakes and reservoirs. 2nd ed , Boca Raton, Fla.: Lewis Publishers Dobrzyn P, Keck A, Tatur A (2005) Sedimentation of chlorophylls in an arctic fjord under freshwater discharge. Hydrobiologia 532: 1~8 Downs JN, Lorenzen CJ (1985) Carbon : pheopigment ratios of zooplankton fecal pellets as an index of herbivorous feeding. Limnol Oceanogr 30: 1024~1036 Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282: 677~680 Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. J Cons Perm Int Explor Mer 30: 3~15 Holm-Hansen O, Riemann B (1978) Chlorophyll a determination - improvements in methodology. Oikos 30: 438~447 Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167: 191~194 Kim B, Choi K, Kim C, Lee UH, Kim YH (2000) Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea. Wat Res 34: 3495~3504 Koeve W, Pollehne F, Oschlies A, Zeitzschel B (2002) Storm-induced convective export of organic matter during spring in the northease Atlantic Ocean. Deep-Sea Res I 49: 1431~1444 Lorenzen CJ (1967) Vertical distribution of chlorophyll and phaeo-pigments - Baja California. Deep-Sea Res 14: 735~745 Lorenzen CJ, Welschmeyer NA (1983) Sinking rate of organic particles. Limnol Oceanogr 28: 766~769 Lorenzen CJ, Downs JN (1986) The specific absorption-coefficients of chlorophyllide-a and pheophorbide-a in 90-percent acetone, and comments on the fluorometric-determination of chlorophyll and pheopigments. Limnol Oceanogr 31: 449~452. Mellor GL, Yamada T (1982) Development of a turbulence closure-model for geophysical fluid problems. Rev Geophys 20: 851~875 Pai SC, Yang CC, Riley JP (1990) Effect of acidity and molybdate concentration on the kinetic of the formation of the phosphoantimonylmolybdenum blue complex. Anal Chim Acta 299: 115~120 Peierls BL, Christian RR, Paerl HW (2003) Water quality and phytoplankton as indicators of hurricane impacts on a large estuarine ecosystem. Estuaries 26: 1329~1343 Robarts RD, Waiser MJ, Hadas O, Zohary T, MacIntyre S (1998) Relaxation of phosphorus limitation due to typhoon-induced mixing in two morphologically distinct basins of Lake Biwa, Japan. Limnol Oceanogr 43: 1023~1036 Shiah FK, Chung SW, Kao SJ, Gong GC, Liu KK (2000) Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait. Conti Shelf Res 20: 2029~2044 Strickland JDH, Parsons TR (1968) A practical Handbook of Seawater Analysis. Bulletin (Fisheries Research Board of Canada) no. 167, Ottawa: Queen's Printer Sonzogni WC, Chapra SC, Armstrong DE, Logan TJ (1982) Bioavailability of phosphorus inputs to lakes. J Environ Qual 11: 555~563. Weiss CM (1969) Relation of phosphates to eutrophication. Journal AWWA 61: 387~391 Wetzel RG (2001) Limnology - Lake and river ecosystems. San Diego: Academic Press 王泰盛、范誠偉、李宗祐、陳莉、高樹基 (2005)水庫季節性翻轉與卡爾森優養指標--以翡翠水庫為例,台灣集水區(含水庫)環境之物理--生地化水文與永續管理研討會論文集,p.69 白書禎 (1989~1991) 翡翠水庫垂直結構季節性變化檢測與監測,翡翠水庫管理局 白書禎、張淑惠、蘇宗德、郭廷瑜、林瑞廷、李延財、曾婉綢 (1999) 翡翠水庫水體各種渾濁指標之應用與濁度之時序變化,中華民國環境保護學會會誌,第二十二卷,第二期,p.85~96. 白書禎 (2002) 翡翠水庫營養鹽儲量與通量變化之研究,2002海洋科學成果發表會論文摘要集,p.211~213 李珮璇 (2001) 暴雨沖刷初期對水源水質衝擊之評估,國立台北科技大學環境規劃與管理研究所碩士論文 吳俊宗 (1987) 翡翠水庫藻類相調查及水質指標之建立研究報告,翡翠水庫管理局 吳俊宗、高麗珠、黃文亞 (2002) 翡翠水庫藻類與水質關係之長期監測(II)成果報告,翡翠水庫管理局 林文隆 (1993) 水庫湖泊磷內部負荷之模式推估,國立交通大學環境工程研究所碩士論文 林明郁 (2004) 翡翠水庫藻類族群結構分析及分層系統動態模擬,國立臺灣大學環境工程研究所碩士論文 張穗蘋 (1995) 水庫蓄水初期內部營養鹽貢獻對水庫水質之影響,國立成功大學環境工程學系博士論文 曾于芳 (2005) 翡翠水庫浮游生物鹼性磷酸酶活性分析,台灣集水區(含水庫)環境之物理-生地化水文與永續管理研討會論文集,p.70 詹森、陳慶生、王胄 (1992) 淺海地區垂直擴散受隨度分層影響之初步探討,中華民國第十四屆海洋工程研討會論文集,p.194~203 廖文蓓 (2001) 翡翠水庫中藻類種群消長之動態模擬,國立臺灣大學環境工程研究所碩士論文 蔡明昊 (2001) 德基水庫不同位址底、土壤與水質之關係,國立中興大學土壤環境科學系碩士論文 引用資料站點 93年翡翠水庫操作運轉資料http://w2.feitsui.gov.tw/opr/93-opr.pdf 中央氣象局--歷史颱風http://61.56.13.9/data2.php 經濟部水利署水文水資源資料管理供應系統http://gweb.wra.gov.tw/wrweb/ 翡翠水庫運用要點http://www.wra.gov.tw 翡翠水庫運用規線http://wwwsys.wra.gov.tw/uploadlaw/附圖一.pdf 翡翠水庫歷年水文資料http://w2.feitsui.gov.tw/opr/waterdata2.htm 颱風 葉綠素 葉綠素甲 翡翠水庫 紊流模式 typhoon chlorophyll chlorophyll a Fei-Tsui Resvoir turbulence model thesis 2005 ftntaiwanuniv 2016-02-20T00:04:05Z 為瞭解影響翡翠水庫水體中葉綠素甲(Chl a)時空變化之控制機制以及颱風的效應 ,本研究於2004年2月至次年4月期間,在翡翠水庫大壩站(週採樣)及水庫上至下游 縱走測線(月採樣)測量水溫、Chl a、非活性葉綠素甲(Phae a)及其比值(PhR=Phae a/(Phae a+Chl a) )、總懸浮物質量(TSM)及可溶性反應磷(SRP)濃度。並在颱風過後進 行密集採樣。結果發現,在深度分布上,Chl a 濃度表水高底水低,最高值常在5m水 深處。水平分布上則為上游高下游低。在時間分布上,大壩站Chl a10 m積分平均值 (IChl a10m)最高值出現於秋季(5.2 mg L-1),最低值出現於冬季(0.24 mg L-1);全年平均值 為2.3 ± 1.2 mg L-1。複迴歸分析顯示,與IChl a10m全年變異相關之因子為水溫及PhR( 可代表浮游動物攝食或浮游植物本身凋萎作用之強度)。颱風季(8~12月)時除上述二因 子外,另需加入TSM。冷季(12月~次年3月)時,IChl a10m僅與SRP相關。在颱風或 暴雨事件過後,水庫中下水層(約水下20~80 m)出現次表層懸浮物團狀物(SSMP),而 其上方水體內Chl a 濃度隨之升高,且Chl a 次表層極大值(SCM)所在深度有向下發展 之情形。數據分析顯示TSM 與SRP具正相關,表示SSMP能供應磷酸鹽,可能是水 庫颱風季出現Chl a高濃度值重要成因之一。數值模擬分析結果顯示夏季水溫層化強 烈時,颱風之強風仍無法將深水層所含之物質帶入上層水體;但在秋末因水溫層化微 弱,颱風則可有效地增加混合層的深度,使深水層所含物質進入上層水體。此結果說 明,夏季大壩站表水若出現高SRP或高Chl a濃度值,應來自於水庫上游的橫向輸送 。夏季颱風所引發之SSMP若積存於水庫內,則會因秋颱或冬季的寒潮暴發而進入表 水,而影響秋季及次年春季藻華的嚴重程度。 The propose of this research is to study on the temporal-spatial variation of chlorophyll a concentrations in the Fei-Tsui Reservoir and the mechanism of how typhoons impact on it. The surface water temperature (ST), chlorophyll a (Chl a), phaeopigments a (Phae a) ratio (PhR= Phae a/(Phae a+Chl a)), total suspended matters (TSM) and soluble reactive phosphorus (SRP) have been measured in the Fei-Tsui Reservior from 2004 Feb to 2005 Apr, especially made high frequent sampling after typhoons. The result during the researching period told that the vertical distribution of Chl a concentrations was higher at the surface but lower at the bottom. The highest Chl a concentrations often located at 5m depth of water. The horizontal distribution of the Chl a concentrations was higher in the upstream but lower in the downstream. About the temporal distribution, the average of integrated Chl a concentrations above 10m (IChl a10m) had the highest value in autumn (5.2 mg L-1) and the lowest in winter (0.24 mg L-1). For its annual average value was 2.3 ± 1.2 mg L-1. The multiple regression analysis shows that the change of IChl a10m during research is related with ST and PhR (indicated the grazing of the zooplankton or the descending of the phytoplankton). The term TSM is considered with IChl a10m during typhoon season from Aug to Dec. The term SRP reveals related with IChl a10m only during cold season from Dec to next Mar. After typhoon or heavy rain, high TSM turbidity current was presented in the middle and bottom water (about 20~80m water depth) of the reservoir; the Chl a concentrations rose at the upper water body of the turbidity current, which the depth of subsurface chlorophyll maxima appeared deeper. The data analysis shows that TSM is iii positive related with SRP. That indicates the turbidity current can be a source of phosphate. It could be one reason of why the high Chl a concentrations presents during the typhoon season. The numerical model analysis shows that the strong breeze of typhoon can’t draw the material of deep water up because the water temperture stratification is so strong in summer. But the stratification is weaker in the late autumn that typhoon can make the mixing layer deeper efficaciously and causes the material of deep water is brought into upper water body. As these results point out, if the SRP or Chl a concentrations reveal high value in summer, the input should come from upstream. If the high TSM and SRP water induced by summer typhoon accumulates in the reservoir, it will mix with surface water causing by the typhoon in autumn or surge in winter and will affect the magnitude of the bloom in this autumn or next spring. 目 錄 中文摘要 i 英文摘要 ii 誌謝 iv 目錄 v 表目錄 vi 圖目錄 vii 序論 1 材料與方法 4 結果 7 討論 16 結論 23 參考文獻 24 表列 27 圖列 29 附錄一.翡翠水庫1987~2004年各月份表水葉綠素平均值圖 42 附錄二.2004年8月至2005年4月螢光探針測值與手測值相關性 42 附錄三.總懸浮物質量與濁度間的關係 43 附錄四.群聚呼吸率 44 附錄五.葉綠素甲及相關色素沈降速率 45 Thesis Arctic National Taiwan University Institutional Repository (NTUR) |