氣力揚昇幫浦應用於海域甲烷水合物輸送之初步研究

甲烷水合物具備了多項的能源特性,是最近相當受到注目的一項替代能源,而在台灣西南外海就有發現大量甲烷水合物,若能對此處的甲烷水合物進行開採,對於台灣將有很大的幫助。 本研究將以氣力揚昇幫浦(airlift pump)作為輸送機制,多流體模式(multi-fluid model)作為理論基礎,來對海域甲烷水合物顆粒之輸送做研究。由於甲烷水合物會因輸送過程中壓力降低而分解出甲烷氣,此情形將會對整個輸送行為造成影響,因此本研究中將把此現象納入考慮,並以數值計算的方式來對流態為穩態時之海域甲烷水合物輸送做計算,並對其數值結果做討論。 由計算結果得知管中的混合流體之流體性質(包括相佔有率、相速度…等)會隨...

Full description

Bibliographic Details
Main Authors: 朱弘傑, Chu, Hung-Chieh
Other Authors: 梁乃匡, 臺灣大學:海洋研究所
Format: Thesis
Language:Chinese
English
Published: 2007
Subjects:
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/56479
http://ntur.lib.ntu.edu.tw/bitstream/246246/56479/1/ntu-96-R93241103-1.pdf
id ftntaiwanuniv:oai:140.112.114.62:246246/56479
record_format openpolar
institution Open Polar
collection National Taiwan University Institutional Repository (NTUR)
op_collection_id ftntaiwanuniv
language Chinese
English
topic 甲烷水合物
氣力揚昇幫浦
多流體模式
自行氣力揚昇
methane hydrates
airlift pump
multi-fluid model
self-air-lift
spellingShingle 甲烷水合物
氣力揚昇幫浦
多流體模式
自行氣力揚昇
methane hydrates
airlift pump
multi-fluid model
self-air-lift
朱弘傑
Chu, Hung-Chieh
氣力揚昇幫浦應用於海域甲烷水合物輸送之初步研究
topic_facet 甲烷水合物
氣力揚昇幫浦
多流體模式
自行氣力揚昇
methane hydrates
airlift pump
multi-fluid model
self-air-lift
description 甲烷水合物具備了多項的能源特性,是最近相當受到注目的一項替代能源,而在台灣西南外海就有發現大量甲烷水合物,若能對此處的甲烷水合物進行開採,對於台灣將有很大的幫助。 本研究將以氣力揚昇幫浦(airlift pump)作為輸送機制,多流體模式(multi-fluid model)作為理論基礎,來對海域甲烷水合物顆粒之輸送做研究。由於甲烷水合物會因輸送過程中壓力降低而分解出甲烷氣,此情形將會對整個輸送行為造成影響,因此本研究中將把此現象納入考慮,並以數值計算的方式來對流態為穩態時之海域甲烷水合物輸送做計算,並對其數值結果做討論。 由計算結果得知管中的混合流體之流體性質(包括相佔有率、相速度…等)會隨著流體之輸送而產生變化,越靠近管出口時,變化越劇烈。而在水合物顆粒的分解上,由於其分解速率極慢,因此對於整個系統而言影響極小,若想達到Hamaguchi, et al.(2003)所提的自行氣力揚升(self-air-lift)之程度,恐怕需要對整個輸送系統做一些改變。然而未分解的甲烷水合物反而適合其輸送。 The methane hydrate is a chemical substance of multiple energy characteristics, which has been regarded as a future energy resource. It is found that there are a lot of methane hydrate reserve in the South –Western sea area of Taiwan. It is beneficial for us, if we can exploit the methane hydrate commercially. The concept of this study is to use the airlift pump to transport marine methane hydrates from the sea bed up to a plant ship, in which a multi-fluid model is employed. In the transport process, the methane hydrate will decompose into methane gas and water as the pipe pressure decreasing. In this study a three phase flow behavior will be analyzed numerically in order to develop a commercialized methane hydrate recovery system. According to the analysis of the transport process, the fluid characteristics in the pipe are always changing, especially when the fluid is close to the upper pipe outlet. Because the decomposition time rate is too small, its influence is quiet limited. It is necessary to have some changes, if the “self-air-lift” concept proposed by Hamaguchi et al. (2003) can is to realized. However, the methane hydrate itself is easier for transportation. 誌謝 i 中文摘要 ii Abstract iii 本文目錄 iv 圖目錄 vi 表目錄 viii 符號說明 ix 第一章 序論 1-1 研究背景 1 1-2 甲烷水合物的簡介 2 1-3 氣力揚升幫浦(airlift pump)的簡介 3 1-4 文獻回顧 4 1-5 研究方法及目的 6 第二章 理論基礎 2-1 基本假設 8 2-2 各相佔有率(void fraction) 9 2-3 流動型態(flow patterns) 10 2-4 控制方程式 10 2-4.1 質量守恆方程式 11 2-4.2 動量守恆方程式 11 2-4.3 狀態方程式 15 2-4.4 佔有率關係式 16 2-5 質量變化 16 2-5.1 甲烷水合物化學分解式 16 2-5.2 逸壓(fugacity) 17 2-5.3 水合物顆粒之直徑變化 18 2-5.4 因水合物分解所造成之質量變化 19 第三章 數值計算方法 3-1 座標及數值格點之設定 22 3-2 控制方程式之離散 22 3-3 初始條件的計算 24 3-3.1 二相部分(下段管) 25 3-3.2 入口壓力之計算 25 3-3.3 三相部分(上段管) 26 3-4 數值計算結果之合理條件 26 3-5 數值計算程序 27 第四章 數值計算結果與討論 4-1 純三相輸送(不含分解現象) 28 4-2 含分解現象之輸送 34 4-2.1 包含分解現象之數值計算結果 34 4-2.2 水合物分解現象的探討 35 第五章 結論與建議.- 36 - 參考文獻 38 附錄一.66 附錄二 67
author2 梁乃匡
臺灣大學:海洋研究所
format Thesis
author 朱弘傑
Chu, Hung-Chieh
author_facet 朱弘傑
Chu, Hung-Chieh
author_sort 朱弘傑
title 氣力揚昇幫浦應用於海域甲烷水合物輸送之初步研究
title_short 氣力揚昇幫浦應用於海域甲烷水合物輸送之初步研究
title_full 氣力揚昇幫浦應用於海域甲烷水合物輸送之初步研究
title_fullStr 氣力揚昇幫浦應用於海域甲烷水合物輸送之初步研究
title_full_unstemmed 氣力揚昇幫浦應用於海域甲烷水合物輸送之初步研究
title_sort 氣力揚昇幫浦應用於海域甲烷水合物輸送之初步研究
publishDate 2007
url http://ntur.lib.ntu.edu.tw/handle/246246/56479
http://ntur.lib.ntu.edu.tw/bitstream/246246/56479/1/ntu-96-R93241103-1.pdf
genre Methane hydrate
genre_facet Methane hydrate
op_relation 1. Bishnoi P. Raj and V. Natarajan (1996), “Formation and decomposition of gas hydrates”, Fluid Phase Equilibria, Vol.117, pp.168-177. 2. Chen Fanghui, Poojitha D.Yapa (2001), “Estimating hydrate formation and decomposition of gases released in a deepwater ocean plume, Journal of Marine System”, Vol.30, pp.21-32. 3. Drew D., L.Cheng and R. T. Lahey, Jr. (1979), “The analysis of virtual mass effects in two-phase flow”, Int. J. Multiphase Flow, Vol.5, pp.233-242. 4. Fan Liang-Shih (1989), “Gas-Liquid-Solid Fluidization Engineering”, Butterworth Publishers. 5. Goel Naval, Michael Wiggins, Subhash Shah (2001), “Analytical modeling of gas recovery from in situ hydrates dissociation”, Journal of Petroleum Science and Engineering, Vol.29, pp.115-127. 6. Hamaguchi Ryoukichi, Hiroki Yahashi, Masaki Minemoto, Yousuke Matsukuma, Naoyuki Kamishima, Kiwamu Arikawa, Masaharu Watabe (2003), “Numerical study on recovery system of methane hydrate”, Proceedings of The Fifth(2003)Ocean Mining Symposium Tsukuba, Japan, September 15-19, pp.176-180. 7. Hatta Natuo, Masaaki Omodaka and Hitoshi Fujimoto (1998), “Theoretical modeling of gas-liquid two-phase flow in a vertical and straight pipe”, Steel Research, Vol.69, pp.92-101. 8. Hatta Natsuo, Hitoshi Fujimoto, Makoto Isobe and Jung-Seock Kang (1998), “Theoretical analysis of flow characteristics of multiphase mixture in a vertical pipe”, Int. J. Multiphase Flow, Vol.24, pp.539-561. 9. Hatta Natsuo, Masaaki Omodaka, Fumitaka Nakajima, Takahiro Takatsu, Hitoshi Fujimoto, Hirohiko Takuda (1999), “Predictable Model for Characteristics of One-Dimensional Solid-Gas-Liquid Three-Phase Mixtures Flow Along a Vertical Pipeline With an Abrupt Enlargement in Diameter”, Journal of Fluids Engineering, Vol.121, pp.330-342. 10. Hyndman R. D. (2004), “Geophysical studies of marine gas hydrate off western Canada”, International workshop on Gas Hydrate Exploration and Exploitation, Taipei, November 8-9, pp.15-19. 11. Kajishima Takeo and Takayuki Saito (1996), “Numerical Simulation of Unsteady Flow in Air-Lift Pump”, JSME International Journal, Series B, Vol.39, No.3, pp.525-532. 12. Khalil M. F., K.A. Elshorbagy, S.Z. Kassab, R.I. Fahmy (1999), “Effects of air injection method on the performance of an air lift pump”, International Journal of Heat and Fluid Flow, VOL.20, PP.598-604. 13. Kim H. C., P. R. Bishnoi, R. A. Heimedann and S. S. H. Rizvi (1987), “Kinetics of methane hydrate decomposition”, Chemical Engineering Science, Vol.42, pp.1645-1653. 14. Kocamustafaogullari G., W. D. Huang, J. Razi (1994), “Measurement and modeling of average void fraction, bubble size and interfacial area”, Nuclear Engineering and Design, Vol.148, pp.437-453. 15. Liang Nai-Kuang (1996), “A Preliminary Study on Air-Lift Artificial Upwelling System”, ACTA OCEANOGRAPHICA TAIWANICA, Vol.35, pp.187-200. 16. Liang Nai-Kuang, Hai-Kuen Peng (2005), “A study of air-lift artificial upwelling”, Ocean Engineering, Vol.32, pp.731-745. 17. Lahey R. T. Jr, , L. Y. Cheng, D. A. Drew and J. E. Flaherty (1980), “The effect of virtual mass on the numerical stability of accelerating two-phase flows”, Int. J. Multiphase Flow, Vol.6, pp.281-294. 18. Lee Sang-Yong, Gerald D. Holder (2001), “Methane hydrates potential as a future energy resource”, Fuel Processing Technology, Vol.71, pp.181-186. 19. Moore Walter J. (1962), “Physical chemistry”, Englewood Cliffs, N.J.: Prentice-Hall. 20. Nenes A., D. Assimacopoulos, N. Markatos and E. Mitsoulis (1996), “Simulation of Airliftpumps for Deep Water Wells”, the Canadian Journal of Chemical Emgineering, Vol.74, pp.448-456. 21. Wallis G. B. (1969), “One-dimensional Two-phase Flow”, McGraw-Hill. 22. Weber M. and Y. Degegil (1976), “Transport of solids according to the air-lift principle”, HYDROTRANSPORT 4, H1-1~H1-23. 23. Yoshinaga T. and Y. Sato (1996), “Performance of an airlift pump for conveying coarse particles”, Int. J. Multiphase Flow, Vol.22 No.2, pp.223-238. 24. Zhang J.-P., J.R. Grace, N. Epstein and K.S. Lim, (1997)”Flow regime identification in gas-liquid flow and three-phase fluidized beds”, Chemical Engineering Science, Vol.52, pp.3979-399. 25. 古寬閔 (2003), “氣揚式幫浦應用於吸魚機之可行性基礎研究”, 國立台灣大學海洋研究所碩士論文. 26. 徐春田、陳育鍾、王紹陪、黃世興、邱致中、張文洲 (2002), “從台灣西南海域之海床溫度推估甲烷水合物之存在界限(I),”國科會能源科技學術合作研究計劃成果報告. 27. 陳育鍾 (2001), “從台灣西南海域之海床溫度推估甲烷氣水包合物的深度研究”, 國立台灣大學海洋研究所碩士論文. 28. 彭海鯤 (1999), “氣力揚升式人工湧升流之實驗與理論”, 國立台灣大學海洋研究所博士論文. 29. 齊修 (1959), “物理化學”, 國立編譯館. 30. 鄧瑞彬 (2003), “天然氣水合物採收技術之研究”, 國立成功大學資源工程研究所碩士論文. 31. 劉大有 (1993), “二相流體動力學”, 高等教育出版社. 32. 劉家瑄、徐春田 (2002), “甲烷水合物研究─探索未來的新能源及對環境的衝擊,自然科學簡訊第十四卷第一期”, pp.18-22. 33. 潘欽 (2001), “沸騰熱傳與雙相流”, 俊傑書局股份有限公司. 34. 錢建嵩 (1992), “流體化床技術”, 高立圖書股份有限公司.
_version_ 1766068689913774080
spelling ftntaiwanuniv:oai:140.112.114.62:246246/56479 2023-05-15T17:11:56+02:00 氣力揚昇幫浦應用於海域甲烷水合物輸送之初步研究 A Preliminary Study of the Application of the Airlift Pump to Transport Ocean Methane Hydrates 朱弘傑 Chu, Hung-Chieh 梁乃匡 臺灣大學:海洋研究所 2007 2954297 bytes application/pdf http://ntur.lib.ntu.edu.tw/handle/246246/56479 http://ntur.lib.ntu.edu.tw/bitstream/246246/56479/1/ntu-96-R93241103-1.pdf zh-TW en_US chi eng 1. Bishnoi P. Raj and V. Natarajan (1996), “Formation and decomposition of gas hydrates”, Fluid Phase Equilibria, Vol.117, pp.168-177. 2. Chen Fanghui, Poojitha D.Yapa (2001), “Estimating hydrate formation and decomposition of gases released in a deepwater ocean plume, Journal of Marine System”, Vol.30, pp.21-32. 3. Drew D., L.Cheng and R. T. Lahey, Jr. (1979), “The analysis of virtual mass effects in two-phase flow”, Int. J. Multiphase Flow, Vol.5, pp.233-242. 4. Fan Liang-Shih (1989), “Gas-Liquid-Solid Fluidization Engineering”, Butterworth Publishers. 5. Goel Naval, Michael Wiggins, Subhash Shah (2001), “Analytical modeling of gas recovery from in situ hydrates dissociation”, Journal of Petroleum Science and Engineering, Vol.29, pp.115-127. 6. Hamaguchi Ryoukichi, Hiroki Yahashi, Masaki Minemoto, Yousuke Matsukuma, Naoyuki Kamishima, Kiwamu Arikawa, Masaharu Watabe (2003), “Numerical study on recovery system of methane hydrate”, Proceedings of The Fifth(2003)Ocean Mining Symposium Tsukuba, Japan, September 15-19, pp.176-180. 7. Hatta Natuo, Masaaki Omodaka and Hitoshi Fujimoto (1998), “Theoretical modeling of gas-liquid two-phase flow in a vertical and straight pipe”, Steel Research, Vol.69, pp.92-101. 8. Hatta Natsuo, Hitoshi Fujimoto, Makoto Isobe and Jung-Seock Kang (1998), “Theoretical analysis of flow characteristics of multiphase mixture in a vertical pipe”, Int. J. Multiphase Flow, Vol.24, pp.539-561. 9. Hatta Natsuo, Masaaki Omodaka, Fumitaka Nakajima, Takahiro Takatsu, Hitoshi Fujimoto, Hirohiko Takuda (1999), “Predictable Model for Characteristics of One-Dimensional Solid-Gas-Liquid Three-Phase Mixtures Flow Along a Vertical Pipeline With an Abrupt Enlargement in Diameter”, Journal of Fluids Engineering, Vol.121, pp.330-342. 10. Hyndman R. D. (2004), “Geophysical studies of marine gas hydrate off western Canada”, International workshop on Gas Hydrate Exploration and Exploitation, Taipei, November 8-9, pp.15-19. 11. Kajishima Takeo and Takayuki Saito (1996), “Numerical Simulation of Unsteady Flow in Air-Lift Pump”, JSME International Journal, Series B, Vol.39, No.3, pp.525-532. 12. Khalil M. F., K.A. Elshorbagy, S.Z. Kassab, R.I. Fahmy (1999), “Effects of air injection method on the performance of an air lift pump”, International Journal of Heat and Fluid Flow, VOL.20, PP.598-604. 13. Kim H. C., P. R. Bishnoi, R. A. Heimedann and S. S. H. Rizvi (1987), “Kinetics of methane hydrate decomposition”, Chemical Engineering Science, Vol.42, pp.1645-1653. 14. Kocamustafaogullari G., W. D. Huang, J. Razi (1994), “Measurement and modeling of average void fraction, bubble size and interfacial area”, Nuclear Engineering and Design, Vol.148, pp.437-453. 15. Liang Nai-Kuang (1996), “A Preliminary Study on Air-Lift Artificial Upwelling System”, ACTA OCEANOGRAPHICA TAIWANICA, Vol.35, pp.187-200. 16. Liang Nai-Kuang, Hai-Kuen Peng (2005), “A study of air-lift artificial upwelling”, Ocean Engineering, Vol.32, pp.731-745. 17. Lahey R. T. Jr, , L. Y. Cheng, D. A. Drew and J. E. Flaherty (1980), “The effect of virtual mass on the numerical stability of accelerating two-phase flows”, Int. J. Multiphase Flow, Vol.6, pp.281-294. 18. Lee Sang-Yong, Gerald D. Holder (2001), “Methane hydrates potential as a future energy resource”, Fuel Processing Technology, Vol.71, pp.181-186. 19. Moore Walter J. (1962), “Physical chemistry”, Englewood Cliffs, N.J.: Prentice-Hall. 20. Nenes A., D. Assimacopoulos, N. Markatos and E. Mitsoulis (1996), “Simulation of Airliftpumps for Deep Water Wells”, the Canadian Journal of Chemical Emgineering, Vol.74, pp.448-456. 21. Wallis G. B. (1969), “One-dimensional Two-phase Flow”, McGraw-Hill. 22. Weber M. and Y. Degegil (1976), “Transport of solids according to the air-lift principle”, HYDROTRANSPORT 4, H1-1~H1-23. 23. Yoshinaga T. and Y. Sato (1996), “Performance of an airlift pump for conveying coarse particles”, Int. J. Multiphase Flow, Vol.22 No.2, pp.223-238. 24. Zhang J.-P., J.R. Grace, N. Epstein and K.S. Lim, (1997)”Flow regime identification in gas-liquid flow and three-phase fluidized beds”, Chemical Engineering Science, Vol.52, pp.3979-399. 25. 古寬閔 (2003), “氣揚式幫浦應用於吸魚機之可行性基礎研究”, 國立台灣大學海洋研究所碩士論文. 26. 徐春田、陳育鍾、王紹陪、黃世興、邱致中、張文洲 (2002), “從台灣西南海域之海床溫度推估甲烷水合物之存在界限(I),”國科會能源科技學術合作研究計劃成果報告. 27. 陳育鍾 (2001), “從台灣西南海域之海床溫度推估甲烷氣水包合物的深度研究”, 國立台灣大學海洋研究所碩士論文. 28. 彭海鯤 (1999), “氣力揚升式人工湧升流之實驗與理論”, 國立台灣大學海洋研究所博士論文. 29. 齊修 (1959), “物理化學”, 國立編譯館. 30. 鄧瑞彬 (2003), “天然氣水合物採收技術之研究”, 國立成功大學資源工程研究所碩士論文. 31. 劉大有 (1993), “二相流體動力學”, 高等教育出版社. 32. 劉家瑄、徐春田 (2002), “甲烷水合物研究─探索未來的新能源及對環境的衝擊,自然科學簡訊第十四卷第一期”, pp.18-22. 33. 潘欽 (2001), “沸騰熱傳與雙相流”, 俊傑書局股份有限公司. 34. 錢建嵩 (1992), “流體化床技術”, 高立圖書股份有限公司. 甲烷水合物 氣力揚昇幫浦 多流體模式 自行氣力揚昇 methane hydrates airlift pump multi-fluid model self-air-lift thesis 2007 ftntaiwanuniv 2016-02-20T00:03:37Z 甲烷水合物具備了多項的能源特性,是最近相當受到注目的一項替代能源,而在台灣西南外海就有發現大量甲烷水合物,若能對此處的甲烷水合物進行開採,對於台灣將有很大的幫助。 本研究將以氣力揚昇幫浦(airlift pump)作為輸送機制,多流體模式(multi-fluid model)作為理論基礎,來對海域甲烷水合物顆粒之輸送做研究。由於甲烷水合物會因輸送過程中壓力降低而分解出甲烷氣,此情形將會對整個輸送行為造成影響,因此本研究中將把此現象納入考慮,並以數值計算的方式來對流態為穩態時之海域甲烷水合物輸送做計算,並對其數值結果做討論。 由計算結果得知管中的混合流體之流體性質(包括相佔有率、相速度…等)會隨著流體之輸送而產生變化,越靠近管出口時,變化越劇烈。而在水合物顆粒的分解上,由於其分解速率極慢,因此對於整個系統而言影響極小,若想達到Hamaguchi, et al.(2003)所提的自行氣力揚升(self-air-lift)之程度,恐怕需要對整個輸送系統做一些改變。然而未分解的甲烷水合物反而適合其輸送。 The methane hydrate is a chemical substance of multiple energy characteristics, which has been regarded as a future energy resource. It is found that there are a lot of methane hydrate reserve in the South –Western sea area of Taiwan. It is beneficial for us, if we can exploit the methane hydrate commercially. The concept of this study is to use the airlift pump to transport marine methane hydrates from the sea bed up to a plant ship, in which a multi-fluid model is employed. In the transport process, the methane hydrate will decompose into methane gas and water as the pipe pressure decreasing. In this study a three phase flow behavior will be analyzed numerically in order to develop a commercialized methane hydrate recovery system. According to the analysis of the transport process, the fluid characteristics in the pipe are always changing, especially when the fluid is close to the upper pipe outlet. Because the decomposition time rate is too small, its influence is quiet limited. It is necessary to have some changes, if the “self-air-lift” concept proposed by Hamaguchi et al. (2003) can is to realized. However, the methane hydrate itself is easier for transportation. 誌謝 i 中文摘要 ii Abstract iii 本文目錄 iv 圖目錄 vi 表目錄 viii 符號說明 ix 第一章 序論 1-1 研究背景 1 1-2 甲烷水合物的簡介 2 1-3 氣力揚升幫浦(airlift pump)的簡介 3 1-4 文獻回顧 4 1-5 研究方法及目的 6 第二章 理論基礎 2-1 基本假設 8 2-2 各相佔有率(void fraction) 9 2-3 流動型態(flow patterns) 10 2-4 控制方程式 10 2-4.1 質量守恆方程式 11 2-4.2 動量守恆方程式 11 2-4.3 狀態方程式 15 2-4.4 佔有率關係式 16 2-5 質量變化 16 2-5.1 甲烷水合物化學分解式 16 2-5.2 逸壓(fugacity) 17 2-5.3 水合物顆粒之直徑變化 18 2-5.4 因水合物分解所造成之質量變化 19 第三章 數值計算方法 3-1 座標及數值格點之設定 22 3-2 控制方程式之離散 22 3-3 初始條件的計算 24 3-3.1 二相部分(下段管) 25 3-3.2 入口壓力之計算 25 3-3.3 三相部分(上段管) 26 3-4 數值計算結果之合理條件 26 3-5 數值計算程序 27 第四章 數值計算結果與討論 4-1 純三相輸送(不含分解現象) 28 4-2 含分解現象之輸送 34 4-2.1 包含分解現象之數值計算結果 34 4-2.2 水合物分解現象的探討 35 第五章 結論與建議.- 36 - 參考文獻 38 附錄一.66 附錄二 67 Thesis Methane hydrate National Taiwan University Institutional Repository (NTUR)