三維度魚道水理及魚體行進力能之數值模擬研究

本研究主要目的為研析上溯魚種-駝背大麻哈 (pink salmon) 在池堰式與豎孔式魚道流場中,採不同之上溯運動方式、不同之上溯路徑,其能量消耗之比較。研究之魚道流場使用三維度標準 紊流模式,搭配體積分率法來模擬具自由液面之二相流邊界條件,並計算魚體在流場中逆流上溯所遭受之阻力與能量之損耗。本研究先以Ead (2004) 與Purertas等 (2004) 所試驗之魚道縮尺模型,來驗證五種不同魚道設計 (三種池堰式、兩種豎孔式) ,流經堰體與隔板之流況與水位,繼而規劃真實尺寸之模式應用案例。本研究藉由不同上溯路徑與上溯運動方式,透過魚體於水中力能之分析研究,並改良Weihs在2002年提出的...

Full description

Bibliographic Details
Main Authors: 顧可欣, Gu, Ke-Shin
Other Authors: 張倉榮, 臺灣大學:生物環境系統工程學研究所
Format: Thesis
Language:Chinese
English
Published: 2007
Subjects:
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/56066
http://ntur.lib.ntu.edu.tw/bitstream/246246/56066/1/ntu-96-R94622027-1.pdf
id ftntaiwanuniv:oai:140.112.114.62:246246/56066
record_format openpolar
institution Open Polar
collection National Taiwan University Institutional Repository (NTUR)
op_collection_id ftntaiwanuniv
language Chinese
English
topic 池堰式魚道
豎孔式魚道
紊流模式
自由液面
體積分率法
Pool-and-weir fishway
Vertical-slot fishway
turbulent model
Volume of fraction method (VOF)
Free surface
spellingShingle 池堰式魚道
豎孔式魚道
紊流模式
自由液面
體積分率法
Pool-and-weir fishway
Vertical-slot fishway
turbulent model
Volume of fraction method (VOF)
Free surface
顧可欣
Gu, Ke-Shin
三維度魚道水理及魚體行進力能之數值模擬研究
topic_facet 池堰式魚道
豎孔式魚道
紊流模式
自由液面
體積分率法
Pool-and-weir fishway
Vertical-slot fishway
turbulent model
Volume of fraction method (VOF)
Free surface
description 本研究主要目的為研析上溯魚種-駝背大麻哈 (pink salmon) 在池堰式與豎孔式魚道流場中,採不同之上溯運動方式、不同之上溯路徑,其能量消耗之比較。研究之魚道流場使用三維度標準 紊流模式,搭配體積分率法來模擬具自由液面之二相流邊界條件,並計算魚體在流場中逆流上溯所遭受之阻力與能量之損耗。本研究先以Ead (2004) 與Purertas等 (2004) 所試驗之魚道縮尺模型,來驗證五種不同魚道設計 (三種池堰式、兩種豎孔式) ,流經堰體與隔板之流況與水位,繼而規劃真實尺寸之模式應用案例。本研究藉由不同上溯路徑與上溯運動方式,透過魚體於水中力能之分析研究,並改良Weihs在2002年提出的跳躍前進之耗能計算方式,將跳躍運動應用至魚道流場內,以進行各種上溯案例間能量損耗之比較。由研究結果顯示,池堰式魚道模式應用案例中,同一魚種之最省能之路徑,為魚體採跳躍上溯且近液面之路徑;而豎孔式魚道模式應用案例則是以通過短隔板後渦流區為最省能之路徑。 The main purpose of this study is to discuss the trajectories of the migrating fish (pink salmon) tracing back to upstream through pool-and-weir fishway and vertical-slot fishway, and compares the energetics for various migrating motions. A 3-D standard turbulent model together with the volume of fraction (VOF) method is used to solve fishway hydrodynamics. The simulated flow-field results are next employed to estimate the force and energy acting on the fish body.The Numerical model is firstly verified by the reduced-scale experimental measurement of Ead et al.(2004) and Purertas et al.(2004). The numerical results are in good agreement with the experimental data in terms of water depths, flow velocities, and free surface profiles. A series of numerical scenario simulations are further conducted to simulate real-size fishways hydrodynamics. For the cases that fish is migrating in the pool-and-weir fishway, we modify the equations of dolphin dynamics (Weihs, 2000) to analyze the energy losses for various migrating motions. The simulated results show that the most economic fish energy passage in the pool-and-weir fishways is to take jump motion and to go through near the water surface, whereas the most economic fish energy passage in the vertical-slot fishway is to take the way which goes through the eddy behind the short slot. 誌謝. i 摘要.ii Abstract .iii 目錄. .iv 圖目錄.viii 表目錄.xi 第一章、緒論.1 1.1 前言.1 1.2 研究動機.2 1.3 研究目的.4 第二章、前人研究.7 2.1 魚道水理試驗.7 2.1.1 池堰式魚道.7 2.1.2 豎孔式魚道.8 2.1.3 丹尼爾式魚道.9 2.2 數值模擬.10 2.3 魚類上溯耗能.12 2.3.1 非跳躍前進之研究.12 2.3.2 採跳躍前進之研究.13 第三章、三維魚道流場求解與模式邊界條件.16 3.1 三維度魚道環境流場模式.16 3.1.1 魚道平均流場統御方程式.16 3.1.2 自由液面平均流場之統御方程式.20 3.1.3 底床邊界與邊牆函數.23 3.1.4 數值方法與數值模擬架構.24 3.2 魚群上溯耗能之計算.28 3.2.1 非跳躍方式上溯之耗能.28 3.2.2 跳躍方式上溯之耗能.29 第四章、模式驗證.34 4.1 模式驗證案例介紹.34 4.1.1 池堰式魚道驗證案例.34 4.1.2 豎孔式魚道驗證案例.35 4.2 魚道試驗流場驗證.36 vi 4.2.1 池堰式魚道試驗驗證.36 4.2.2 豎孔式魚道試驗驗證.38 4.3 魚道流場驗證結果討論.39 第五章、模式應用案例之設計.48 5.1 魚道流場研究案例介紹.48 5.2 魚道流場流況.49 5.3 上溯路徑之規劃.51 5.3.1 池堰式魚道之路徑規劃.51 5.3.2 豎孔式魚道之路徑規劃.52 5.4 洄游魚群之種類.53 第六章、結果與討論.69 6.1 池堰式魚道上溯耗能之比較.69 6.1.1 案例之综合比較.69 6.1.2 案例間物理參數比較.70 6.2 豎孔式魚道上溯耗能之比較.73 第七章、結論與建議.82 7.1 結論.82 7.2 建議.85 參考文獻.87 附錄.91
author2 張倉榮
臺灣大學:生物環境系統工程學研究所
format Thesis
author 顧可欣
Gu, Ke-Shin
author_facet 顧可欣
Gu, Ke-Shin
author_sort 顧可欣
title 三維度魚道水理及魚體行進力能之數值模擬研究
title_short 三維度魚道水理及魚體行進力能之數值模擬研究
title_full 三維度魚道水理及魚體行進力能之數值模擬研究
title_fullStr 三維度魚道水理及魚體行進力能之數值模擬研究
title_full_unstemmed 三維度魚道水理及魚體行進力能之數值模擬研究
title_sort 三維度魚道水理及魚體行進力能之數值模擬研究
publishDate 2007
url http://ntur.lib.ntu.edu.tw/handle/246246/56066
http://ntur.lib.ntu.edu.tw/bitstream/246246/56066/1/ntu-96-R94622027-1.pdf
long_lat ENVELOPE(177.167,177.167,-84.983,-84.983)
geographic Weir
geographic_facet Weir
genre Pink salmon
genre_facet Pink salmon
op_relation 1. 林務局,1992。「台灣省近期防砂壩現況調查報告」。 2. 胡通哲、張世倉、葉明峰,1998。「河川攔河堰及防洪防砂設施 對生態影響改善研究與宣導訓練計畫-第一階段研究成果報告」, 台灣特有生物研究保育中心。 3. 胡通哲、張世倉、李訓煌,1998。「八寶圳階段式魚道之設計與 試驗」,中華水土保持學報,30 (1) :25-32。 4. 吳富春、李國昇、鄭武慎,1998。「魚道水理特性對魚類溯游行 為影響之硏究」,行政院國家科學委員會專題硏究計畫成果報告。 5. 林家愈,1999。「魚道之水理研究」,國立台灣大學農業工程學 研究所碩士論文。 6. 胡通哲、張世倉、葉明峰,2000。「防砂壩改良型舟通式魚道之 試驗研究」,中華水土保持學報,31 (2) :93-98。 7. 李家和,2002。「泛用性三維計算流體力學模式應用於明渠流之 研究」,國立交通大學土木工程學研究所碩士論文。 8. 許銘熙、蘇騰鋐,2003。「豎孔式魚道水理分析」,台灣水利, 51 (4) :21-28。 9. 朱佳仁,2003。「環境流體力學」,科技圖書。 10. 謝怡芳,2004。「三維度紊流大渦模擬在多區間建築物室內環境 風場之應用研究」,國立台灣大學生物環境系統工程學研究所碩 士論文。 11. 林玫珊,2005。「計算生態流體力學在三維度自由液面植栽帶流 場之應用研究」,國立台灣大學生物環境系統工程學研究所碩士 論文。 12. 陳均」,美,2005。「人工濕地對懸浮微粒固體排除機制之數值模 擬國立台灣大學生物環境系統工程學研究所碩士論文。 13. Adams, E.W., W. Rodi, 1990. Modeling flow and mixing in sedimentation tanks. J. of Hydraulic Engineering, 116 (7) :895-913. 88 14. Au, D., D. Weihs, 1980. At high speeds dolphins save energy by leaping. Nature, 284:548 550. 15. Bainbridge, R., 1958. The Speed of Swimming of Fish as Related to Size and to Frequency and Amplitude of The Tail Beat. The Journal of Experimental Biology, 35:109-133. 16. Bainbridge, R., 1960. Speed and Stamina in Three Fish. The Journal of Experimental Biology, 37:129-153. 17. Bainbridge, R., 1961. Problems of Fish Locomotion. Symp. Zool. Sos. Lond., 39:537-555. 18. Bainbridge, R., 1962. Training, Speed and Stamina in Trout. The Journal of Experimental Biology, 37:129-153. 19. Brett, J.R., 1995. Energetics. In Physiological Ecology of Pacific Salmon. Edited by C. Groot, L. Margolis, and W.C. Clarke. University of B.C. Press, Vancouver, B.C. pp. 1-68. 20. Cheong, T.S., M.L. Kavvas, E.K. Andeson, 2006. Evaluation of Adult White Sturgeon Swimming Capabilities and Fishway Design. Environmental Biology of Fishes, 77:197-208. 21. Clay, C.H., 1995. Design of Fishways and Other Facilities. Lewis Publishers, Ann AArbor, Michigan. 22. Ead, S.A., C. Katopodis, G.J. Sikors, N. Rajaratnam, 2004. Flow Regimes and Structure in Pool and Weir Fishways. Journal of Environment and Engineering, 3:379-390. 23. Faure, J.B., N. Buil, B. Gay, 2004. 3-D Modeling of Unsteady Free-Surface Flow in Open Channel. Journal of Hydraulic Research, 42 (3) :263-272. 24. Fish, F.E., C.A. Hui, 1991. Dolphin Swimming-A Review. Mammal Review, 21 (4) :181-195. 25. Hirt, C.W., B.D. Nichols, 1981. Volume of fluid (VOF) Method for the Dynamics of Free Boundaries. Journal of Competational Physics, 39:201-225. 26. Hui, C.A., 1989. Surfacing Behavior and Ventilation in Free-Ranging Dolphins. Journal of Mammalogy, 70 (4) :833-835. 27. Khan, L.A., 2006. A Three-Dimensional Computational Fluid Dynamics (CFD) Model Analysis of Free Surface Hydrodynamics 89 and Fish Passage Energetics in a Vertical-Slot Fishway. North American Journal of Fisheries Management, 26:255-267. 28. Kim, J.H., 2001. Hydraulic Characteristics by Weir Type in a Pool-Weir Fishway. Ecological Engineering, 16:425-433. 29. Larinier, M., J.P. Porcher, F. Travade, C. Gosset, 1998. Passes a poisons. Expertise et conception des ouvrages de franchissement. Conseil Superieur de la Peche, Paris, 336 pp. 30. Lighthill, M.L., 1971. Large-Amplitude Elongated-Body Theory of Fish Locomotion. Proceedings of the Royal Society of London. Series B, Biological Sciences, 16:125-138. 31. Liu, C., A. Huhe, W. Ma, 2002. Numerical and Experimental Investigation of Flow Over a Semicircular Weir. ACAT Mechanica Sinica, 18 (6) :594-602. 32. Liu, M., N. Rajaratnam, Z.Z. David, 2006. Mean Flow and Turbulence Structure in Vertical Slot Fishways. Journal of Hydraulic Engineering, 132 (8) :765-777. 33. Launder, B.E., D.B. Spalding, 1974. The numerical computation of turbulent flow. Computer Methods in Applied Mechanics and Engineering, 269-289. 34. Ma, L., P.J. Ashworth, J.L. Best, L. Elliott, D.B. Ingham, L.J. Whitcombe, 2002. Computational fluid dynamics and the physical modeling of an upland urban river. Geomorphology, 44:375-391. 35. Pettersson, L.B., C. Bronmark, 1999. Energetic Consequences on an Inducible Morphological Defense in Crucian Carp. Oecologia, 121: 12-18. 36. Powers, P.A., J.F. Orsborn, T.W. Bumstead, S.K. Kingsley, W.C. Mih, 1986. Fishways:An Assessment of Their Development and Design. Bonneville Power Asministration, Project 82-14, Portland, Oregon. 37. Puertas, J., L. Pena, T. Teijeiro, 2004. Experimental Approach to the Hydraulics of Vertical Slot Fishways. Journal of Hydraulic Engineering, 130 (1) :10-23. 38. Rajaratnam, N., C. Katopodis, 1984. Hydraulics of Denil Fishways. Journal of Hydraulic Engineering, 110 (9) :1219-1233. 90 39. Rajaratnam, N., C. Katopodis, 1986. Hydraulics of Vertical-Slot Fishways. Canadian Journal of Civil Engineering, 112: 909-927. 40. Rajaratnam, N., C. Katopodis, 1986. Hydraulics of Two-Level Denil Fishways. Journal of Hydraulic Engineering, 113 (5) :670-674. 41. Rajaratnam, N., C. Katopodis, 1988. Plunging and Streaming Flows in Pool and Weir Fishways. Journal of Hydraulic Engineering, 114 (8) :939-944. 42. Rajaratnam, N., C. Katopodis, S. Solanki, 1992. New Designs for Vertical-Slot Fishways. Canadian Journal of Civil Engineering, 19: 402-414. 43. Standen, E.M., S.G. Hinch, M.C. Healey, A.P. Farrell, 2002. Energetic Costs of Migration Through the Fraser River Canyon, British Columbia, in Adult Pink (Oncorhynchus Gorbuscha) and Sockeye (Oncorhynchus Nerka) Salmon as Assessed by EMG Telemetry. Canadian Journal Of Fisheries and Aquatic Sciences, 59:1809-1818. 44. Sundnes, G., 1963. FiskDir. Skr. (Bergen) , 13:126. 45. Teijeiro, T., J. Puertas, L. Pena, 2006. Evaluating Vertical-Slot Fishway Designs in Terms of Fish Swimming Capabilities. Ecological Engineering, 27:37-48. 46. Vogel, S., 1994. Life in Moving Fluids. Priceton University Press, Princeton. New Jersey. 47. Webb, P.W.,1971. The Swimming Energetics of Trout. The Journal of Experimental Biology, 55:489-520. 48. Weihs, D., 2002. Dynamics of olphin Porpoising Revisited. Integrative and comparative biology, 42:1071-1078. 49. Wu, S., N. Rajaratnam, 1999. Structure of Flow in Vertical Slot Fishways. Journal of Hydraulic Engineering, 125 (4) :351-360.
_version_ 1766168545525235712
spelling ftntaiwanuniv:oai:140.112.114.62:246246/56066 2023-05-15T17:59:41+02:00 三維度魚道水理及魚體行進力能之數值模擬研究 Numerical Investigation on Three-Dimensional Fishway Hydrodynamics and Fish Passage Energetics 顧可欣 Gu, Ke-Shin 張倉榮 臺灣大學:生物環境系統工程學研究所 2007 1636136 bytes application/pdf http://ntur.lib.ntu.edu.tw/handle/246246/56066 http://ntur.lib.ntu.edu.tw/bitstream/246246/56066/1/ntu-96-R94622027-1.pdf zh-TW en_US chi eng 1. 林務局,1992。「台灣省近期防砂壩現況調查報告」。 2. 胡通哲、張世倉、葉明峰,1998。「河川攔河堰及防洪防砂設施 對生態影響改善研究與宣導訓練計畫-第一階段研究成果報告」, 台灣特有生物研究保育中心。 3. 胡通哲、張世倉、李訓煌,1998。「八寶圳階段式魚道之設計與 試驗」,中華水土保持學報,30 (1) :25-32。 4. 吳富春、李國昇、鄭武慎,1998。「魚道水理特性對魚類溯游行 為影響之硏究」,行政院國家科學委員會專題硏究計畫成果報告。 5. 林家愈,1999。「魚道之水理研究」,國立台灣大學農業工程學 研究所碩士論文。 6. 胡通哲、張世倉、葉明峰,2000。「防砂壩改良型舟通式魚道之 試驗研究」,中華水土保持學報,31 (2) :93-98。 7. 李家和,2002。「泛用性三維計算流體力學模式應用於明渠流之 研究」,國立交通大學土木工程學研究所碩士論文。 8. 許銘熙、蘇騰鋐,2003。「豎孔式魚道水理分析」,台灣水利, 51 (4) :21-28。 9. 朱佳仁,2003。「環境流體力學」,科技圖書。 10. 謝怡芳,2004。「三維度紊流大渦模擬在多區間建築物室內環境 風場之應用研究」,國立台灣大學生物環境系統工程學研究所碩 士論文。 11. 林玫珊,2005。「計算生態流體力學在三維度自由液面植栽帶流 場之應用研究」,國立台灣大學生物環境系統工程學研究所碩士 論文。 12. 陳均」,美,2005。「人工濕地對懸浮微粒固體排除機制之數值模 擬國立台灣大學生物環境系統工程學研究所碩士論文。 13. Adams, E.W., W. Rodi, 1990. Modeling flow and mixing in sedimentation tanks. J. of Hydraulic Engineering, 116 (7) :895-913. 88 14. Au, D., D. Weihs, 1980. At high speeds dolphins save energy by leaping. Nature, 284:548 550. 15. Bainbridge, R., 1958. The Speed of Swimming of Fish as Related to Size and to Frequency and Amplitude of The Tail Beat. The Journal of Experimental Biology, 35:109-133. 16. Bainbridge, R., 1960. Speed and Stamina in Three Fish. The Journal of Experimental Biology, 37:129-153. 17. Bainbridge, R., 1961. Problems of Fish Locomotion. Symp. Zool. Sos. Lond., 39:537-555. 18. Bainbridge, R., 1962. Training, Speed and Stamina in Trout. The Journal of Experimental Biology, 37:129-153. 19. Brett, J.R., 1995. Energetics. In Physiological Ecology of Pacific Salmon. Edited by C. Groot, L. Margolis, and W.C. Clarke. University of B.C. Press, Vancouver, B.C. pp. 1-68. 20. Cheong, T.S., M.L. Kavvas, E.K. Andeson, 2006. Evaluation of Adult White Sturgeon Swimming Capabilities and Fishway Design. Environmental Biology of Fishes, 77:197-208. 21. Clay, C.H., 1995. Design of Fishways and Other Facilities. Lewis Publishers, Ann AArbor, Michigan. 22. Ead, S.A., C. Katopodis, G.J. Sikors, N. Rajaratnam, 2004. Flow Regimes and Structure in Pool and Weir Fishways. Journal of Environment and Engineering, 3:379-390. 23. Faure, J.B., N. Buil, B. Gay, 2004. 3-D Modeling of Unsteady Free-Surface Flow in Open Channel. Journal of Hydraulic Research, 42 (3) :263-272. 24. Fish, F.E., C.A. Hui, 1991. Dolphin Swimming-A Review. Mammal Review, 21 (4) :181-195. 25. Hirt, C.W., B.D. Nichols, 1981. Volume of fluid (VOF) Method for the Dynamics of Free Boundaries. Journal of Competational Physics, 39:201-225. 26. Hui, C.A., 1989. Surfacing Behavior and Ventilation in Free-Ranging Dolphins. Journal of Mammalogy, 70 (4) :833-835. 27. Khan, L.A., 2006. A Three-Dimensional Computational Fluid Dynamics (CFD) Model Analysis of Free Surface Hydrodynamics 89 and Fish Passage Energetics in a Vertical-Slot Fishway. North American Journal of Fisheries Management, 26:255-267. 28. Kim, J.H., 2001. Hydraulic Characteristics by Weir Type in a Pool-Weir Fishway. Ecological Engineering, 16:425-433. 29. Larinier, M., J.P. Porcher, F. Travade, C. Gosset, 1998. Passes a poisons. Expertise et conception des ouvrages de franchissement. Conseil Superieur de la Peche, Paris, 336 pp. 30. Lighthill, M.L., 1971. Large-Amplitude Elongated-Body Theory of Fish Locomotion. Proceedings of the Royal Society of London. Series B, Biological Sciences, 16:125-138. 31. Liu, C., A. Huhe, W. Ma, 2002. Numerical and Experimental Investigation of Flow Over a Semicircular Weir. ACAT Mechanica Sinica, 18 (6) :594-602. 32. Liu, M., N. Rajaratnam, Z.Z. David, 2006. Mean Flow and Turbulence Structure in Vertical Slot Fishways. Journal of Hydraulic Engineering, 132 (8) :765-777. 33. Launder, B.E., D.B. Spalding, 1974. The numerical computation of turbulent flow. Computer Methods in Applied Mechanics and Engineering, 269-289. 34. Ma, L., P.J. Ashworth, J.L. Best, L. Elliott, D.B. Ingham, L.J. Whitcombe, 2002. Computational fluid dynamics and the physical modeling of an upland urban river. Geomorphology, 44:375-391. 35. Pettersson, L.B., C. Bronmark, 1999. Energetic Consequences on an Inducible Morphological Defense in Crucian Carp. Oecologia, 121: 12-18. 36. Powers, P.A., J.F. Orsborn, T.W. Bumstead, S.K. Kingsley, W.C. Mih, 1986. Fishways:An Assessment of Their Development and Design. Bonneville Power Asministration, Project 82-14, Portland, Oregon. 37. Puertas, J., L. Pena, T. Teijeiro, 2004. Experimental Approach to the Hydraulics of Vertical Slot Fishways. Journal of Hydraulic Engineering, 130 (1) :10-23. 38. Rajaratnam, N., C. Katopodis, 1984. Hydraulics of Denil Fishways. Journal of Hydraulic Engineering, 110 (9) :1219-1233. 90 39. Rajaratnam, N., C. Katopodis, 1986. Hydraulics of Vertical-Slot Fishways. Canadian Journal of Civil Engineering, 112: 909-927. 40. Rajaratnam, N., C. Katopodis, 1986. Hydraulics of Two-Level Denil Fishways. Journal of Hydraulic Engineering, 113 (5) :670-674. 41. Rajaratnam, N., C. Katopodis, 1988. Plunging and Streaming Flows in Pool and Weir Fishways. Journal of Hydraulic Engineering, 114 (8) :939-944. 42. Rajaratnam, N., C. Katopodis, S. Solanki, 1992. New Designs for Vertical-Slot Fishways. Canadian Journal of Civil Engineering, 19: 402-414. 43. Standen, E.M., S.G. Hinch, M.C. Healey, A.P. Farrell, 2002. Energetic Costs of Migration Through the Fraser River Canyon, British Columbia, in Adult Pink (Oncorhynchus Gorbuscha) and Sockeye (Oncorhynchus Nerka) Salmon as Assessed by EMG Telemetry. Canadian Journal Of Fisheries and Aquatic Sciences, 59:1809-1818. 44. Sundnes, G., 1963. FiskDir. Skr. (Bergen) , 13:126. 45. Teijeiro, T., J. Puertas, L. Pena, 2006. Evaluating Vertical-Slot Fishway Designs in Terms of Fish Swimming Capabilities. Ecological Engineering, 27:37-48. 46. Vogel, S., 1994. Life in Moving Fluids. Priceton University Press, Princeton. New Jersey. 47. Webb, P.W.,1971. The Swimming Energetics of Trout. The Journal of Experimental Biology, 55:489-520. 48. Weihs, D., 2002. Dynamics of olphin Porpoising Revisited. Integrative and comparative biology, 42:1071-1078. 49. Wu, S., N. Rajaratnam, 1999. Structure of Flow in Vertical Slot Fishways. Journal of Hydraulic Engineering, 125 (4) :351-360. 池堰式魚道 豎孔式魚道 紊流模式 自由液面 體積分率法 Pool-and-weir fishway Vertical-slot fishway turbulent model Volume of fraction method (VOF) Free surface thesis 2007 ftntaiwanuniv 2016-02-20T00:02:40Z 本研究主要目的為研析上溯魚種-駝背大麻哈 (pink salmon) 在池堰式與豎孔式魚道流場中,採不同之上溯運動方式、不同之上溯路徑,其能量消耗之比較。研究之魚道流場使用三維度標準 紊流模式,搭配體積分率法來模擬具自由液面之二相流邊界條件,並計算魚體在流場中逆流上溯所遭受之阻力與能量之損耗。本研究先以Ead (2004) 與Purertas等 (2004) 所試驗之魚道縮尺模型,來驗證五種不同魚道設計 (三種池堰式、兩種豎孔式) ,流經堰體與隔板之流況與水位,繼而規劃真實尺寸之模式應用案例。本研究藉由不同上溯路徑與上溯運動方式,透過魚體於水中力能之分析研究,並改良Weihs在2002年提出的跳躍前進之耗能計算方式,將跳躍運動應用至魚道流場內,以進行各種上溯案例間能量損耗之比較。由研究結果顯示,池堰式魚道模式應用案例中,同一魚種之最省能之路徑,為魚體採跳躍上溯且近液面之路徑;而豎孔式魚道模式應用案例則是以通過短隔板後渦流區為最省能之路徑。 The main purpose of this study is to discuss the trajectories of the migrating fish (pink salmon) tracing back to upstream through pool-and-weir fishway and vertical-slot fishway, and compares the energetics for various migrating motions. A 3-D standard turbulent model together with the volume of fraction (VOF) method is used to solve fishway hydrodynamics. The simulated flow-field results are next employed to estimate the force and energy acting on the fish body.The Numerical model is firstly verified by the reduced-scale experimental measurement of Ead et al.(2004) and Purertas et al.(2004). The numerical results are in good agreement with the experimental data in terms of water depths, flow velocities, and free surface profiles. A series of numerical scenario simulations are further conducted to simulate real-size fishways hydrodynamics. For the cases that fish is migrating in the pool-and-weir fishway, we modify the equations of dolphin dynamics (Weihs, 2000) to analyze the energy losses for various migrating motions. The simulated results show that the most economic fish energy passage in the pool-and-weir fishways is to take jump motion and to go through near the water surface, whereas the most economic fish energy passage in the vertical-slot fishway is to take the way which goes through the eddy behind the short slot. 誌謝. i 摘要.ii Abstract .iii 目錄. .iv 圖目錄.viii 表目錄.xi 第一章、緒論.1 1.1 前言.1 1.2 研究動機.2 1.3 研究目的.4 第二章、前人研究.7 2.1 魚道水理試驗.7 2.1.1 池堰式魚道.7 2.1.2 豎孔式魚道.8 2.1.3 丹尼爾式魚道.9 2.2 數值模擬.10 2.3 魚類上溯耗能.12 2.3.1 非跳躍前進之研究.12 2.3.2 採跳躍前進之研究.13 第三章、三維魚道流場求解與模式邊界條件.16 3.1 三維度魚道環境流場模式.16 3.1.1 魚道平均流場統御方程式.16 3.1.2 自由液面平均流場之統御方程式.20 3.1.3 底床邊界與邊牆函數.23 3.1.4 數值方法與數值模擬架構.24 3.2 魚群上溯耗能之計算.28 3.2.1 非跳躍方式上溯之耗能.28 3.2.2 跳躍方式上溯之耗能.29 第四章、模式驗證.34 4.1 模式驗證案例介紹.34 4.1.1 池堰式魚道驗證案例.34 4.1.2 豎孔式魚道驗證案例.35 4.2 魚道試驗流場驗證.36 vi 4.2.1 池堰式魚道試驗驗證.36 4.2.2 豎孔式魚道試驗驗證.38 4.3 魚道流場驗證結果討論.39 第五章、模式應用案例之設計.48 5.1 魚道流場研究案例介紹.48 5.2 魚道流場流況.49 5.3 上溯路徑之規劃.51 5.3.1 池堰式魚道之路徑規劃.51 5.3.2 豎孔式魚道之路徑規劃.52 5.4 洄游魚群之種類.53 第六章、結果與討論.69 6.1 池堰式魚道上溯耗能之比較.69 6.1.1 案例之综合比較.69 6.1.2 案例間物理參數比較.70 6.2 豎孔式魚道上溯耗能之比較.73 第七章、結論與建議.82 7.1 結論.82 7.2 建議.85 參考文獻.87 附錄.91 Thesis Pink salmon National Taiwan University Institutional Repository (NTUR) Weir ENVELOPE(177.167,177.167,-84.983,-84.983)