藻床淨水技術應用於水中磷之去除研究

附生藻類具有高適應性,可附著在水域任何物體的表面上。即使群落組成容易受到流況、溫度、光照、營養鹽等條件影響而發生改變,附生藻類仍能繼續在原棲地生存繁衍。台灣地區生態工程之型態多屬於淨化高污染水質之人工濕地,然而藻床淨水技術所能應用之層面則更可從畜牧廢水延伸至低污染環境。近年來,許多研究人員利用附生藻類進行水質改善的實驗,並提出令人注目的研究報告。國內水庫優養化現象日益嚴重,然而目前僅有少數人工濕地生態工法應用於集水區溪流之水質淨化。本研究目的即透過翡翠水庫集水區內金瓜寮溪附生藻類進行生長箱實驗以及棲地環境調查,分析附生藻類將水中磷濃度降低的最低極限和應用藻床淨水技術於野外溪流之合適地點。 室內...

Full description

Bibliographic Details
Main Authors: 王之佑, Wang, Chih -Yu
Other Authors: 張文亮, 臺灣大學:生物環境系統工程學研究所
Format: Thesis
Language:Chinese
English
Published: 2006
Subjects:
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/56054
http://ntur.lib.ntu.edu.tw/bitstream/246246/56054/1/ntu-95-R93622007-1.pdf
id ftntaiwanuniv:oai:140.112.114.62:246246/56054
record_format openpolar
institution Open Polar
collection National Taiwan University Institutional Repository (NTUR)
op_collection_id ftntaiwanuniv
language Chinese
English
topic 藻床淨水技術
附生藻類
磷去除率
溪流
生態工程
algal turf scrubber method
periphyton
phosphorus removal rate
stream
ecological engineering
spellingShingle 藻床淨水技術
附生藻類
磷去除率
溪流
生態工程
algal turf scrubber method
periphyton
phosphorus removal rate
stream
ecological engineering
王之佑
Wang, Chih -Yu
藻床淨水技術應用於水中磷之去除研究
topic_facet 藻床淨水技術
附生藻類
磷去除率
溪流
生態工程
algal turf scrubber method
periphyton
phosphorus removal rate
stream
ecological engineering
description 附生藻類具有高適應性,可附著在水域任何物體的表面上。即使群落組成容易受到流況、溫度、光照、營養鹽等條件影響而發生改變,附生藻類仍能繼續在原棲地生存繁衍。台灣地區生態工程之型態多屬於淨化高污染水質之人工濕地,然而藻床淨水技術所能應用之層面則更可從畜牧廢水延伸至低污染環境。近年來,許多研究人員利用附生藻類進行水質改善的實驗,並提出令人注目的研究報告。國內水庫優養化現象日益嚴重,然而目前僅有少數人工濕地生態工法應用於集水區溪流之水質淨化。本研究目的即透過翡翠水庫集水區內金瓜寮溪附生藻類進行生長箱實驗以及棲地環境調查,分析附生藻類將水中磷濃度降低的最低極限和應用藻床淨水技術於野外溪流之合適地點。 室內實驗在半封閉狀態下,以批次方式,即在實驗開始進行後便不再添加任何營養鹽。實驗初始正磷酸鹽濃度為4~136 μg/L,總磷濃度為27~168 μg/L。實驗結果顯示,當初始的正磷酸鹽磷濃度在35 μg/L以上,附生藻類族群以細絲型綠藻佔優勢。平均之藻乾重生產量為0.05~0.16 g/m2-day,其有機質重量為0.02~0.11 g/m2-day。在此情況下,藻類可使水中磷酸鹽降低至1~2 μg/L,總磷濃度亦不超過10 μg/L。整體實驗中,水體總磷去除百分比最高為95.17 %。 進行野外調查時,沿金瓜寮溪設置28個採樣點,經過12日培養將附生藻類取回,分析藻類生物量與磷元素含量,並同時進行水質分析與棲地物理因子調查。各採樣點水質與物理環境共22個項目調查所得數據,配合生物指標:藻類磷吸收量,進行主成分分析,取得金瓜寮溪流域的6個主成分因子:鹽分因子、營養因子、溶氧因子、濁度因子、硫酸鹽因子、背景因子。根據第1、2主成份得點圖分析,第4、20、23採樣點為高營養因子區域。其中,第4採樣點為主要點源污染,最適合施用藻床淨水技術。由以上結果可知附生藻類具有降低營養鹽至貧養程度的能力,如在集水區溪流施用附生藻,可有效降低水庫優養化的發生。 With high adaptability, periphyton could adhere to any surface in the water. Although periphytic microcommunities are subject to various environmental factors, including current, temperature, light intensity, and nutrient, the flora remains thriving at habitat. Artificial wetlands are the commonest ecological engineering for highly polluted wastewater treatment in Taiwan. However, algal turf scrubber method could serve more wildly ranges from livestock industrial one to low contaminated water. Researches have been done on the algae-water treatment experiment with significant results in recent years. Eutrophication in water reservoir has become more and more severe in Taiwan. However, only few artificial wetlands have been built to clean up stream water in the watershed. The purpose of this study was to determine the degree of phosphorus removal by the periphyton incubated in a growth chamber and the proper sites to apply algal turf scrubber method at Jingualiao Creek in Feitsui Reservoir watershed. The laboratory experiment was conducted under semi-enclosed conditions with no further addition of nutrients except initial addition. The onset of initial phosphate concentration ranged from 4 to 136 μg/L, with total phosphorus concentration between 27 and 168 μg/L. After an incubation of 26 days, periphyton community was dominated by filamentous green algae when the initial phosphate concentration was higher than 35 μg/L. The biomass production of periphyton had been as high as 0.05~0.16 g dry weight/m2-day, with ash free dry weight ranging from 0.02~0.11 g/m2-day Under such conditions, phosphate concentration in each culture was reduced to 1~2 μg/L, with total phosphorus concentration lower than 10 μg/L. As a result, the maximum phosphorus removal efficiency has been up to 95.17%. The field research was conducted at Jingualiao Creek in Feitsui Reservoir watershed. After incubated for twelve days, periphyton communities were sampled at 28 sites by artificial substrate and analyzed for biomass and phosphorus content. Water analysis and surveying of habitat physical condition was conducted at the same time. Twenty two environmental variables and bio-index: periphyton phosphorus uptake rate were combined into a data matrix and subjected to the principle component analysis. Six principle components were extracted as salinity factor, nutrient factor, dissolved oxygen factor, turbidity factor, and background factor. With the scatter plot of the first two principle components, the fourth, twentieth, and twenty-third sample site were classified as high nutrient locations. The result suggests that the point source pollution: fourth sample site was the most suitable place to apply algal turf scrubber method because of its high pollution loading. The present study shows that periphyton can remarkably reduce the phosphorus in stream water and thus is able to prevent water reservoirs from eutrophication when it is applied in the watershed. 目錄 I 圖目錄 III 表目錄 IV 中文摘要 V 英文摘要 VII 第一章、序論 1 1.1水庫與優養化 2 1.2附生藻類 2 1.3溪流環境中的附生藻類 3 1.4附生藻類與水中磷 5 1.5附生藻類應用於水質淨化之文獻回顧 6 1.6研究目的 7 第二章、材料與方法 8 2.1試驗區簡介 8 2.2室內實驗附生藻類生長箱 10 2.3室內實驗設計 10 2.4野外棲地調查 11 2.5藻類生物量分析方法 14 2.6室內實驗藻類組成分析 15 2.7水質分析與棲地物理因子調查 15 2.8主成分分析 16 2.9統計分析 19 第三章、結果與討論 20 3.1室內實驗藻類生長箱中藻類種類組成 20 3.2室內實驗藻類生產量 23 3.3室內實驗藻類磷含量百分比分析 25 3.4室內實驗磷去除量 25 3.5金瓜寮溪附生藻類棲地環境主成分分析結果 27 3.6金瓜寮溪附生藻類棲地環境主成份得點圖分析 30 第四章、結論與建議 33 第五章、參考文獻 35 附錄 41
author2 張文亮
臺灣大學:生物環境系統工程學研究所
format Thesis
author 王之佑
Wang, Chih -Yu
author_facet 王之佑
Wang, Chih -Yu
author_sort 王之佑
title 藻床淨水技術應用於水中磷之去除研究
title_short 藻床淨水技術應用於水中磷之去除研究
title_full 藻床淨水技術應用於水中磷之去除研究
title_fullStr 藻床淨水技術應用於水中磷之去除研究
title_full_unstemmed 藻床淨水技術應用於水中磷之去除研究
title_sort 藻床淨水技術應用於水中磷之去除研究
publishDate 2006
url http://ntur.lib.ntu.edu.tw/handle/246246/56054
http://ntur.lib.ntu.edu.tw/bitstream/246246/56054/1/ntu-95-R93622007-1.pdf
genre Polar Biology
genre_facet Polar Biology
op_relation 1. 王騰崇,2001,大鵬灣竹片上附生藻類生產力之時空變化,第二章,3-4頁,國立中興大學植物學研究所碩士論文。 2. 中華民國行政院環境保護署,2004,環境水質監測年報-水庫水質篇,第一章,壹-2~5頁。 3. 李淑美、陳右人,2002,「氮肥對茶樹生育及品質之影響」,中華農學會報,第3卷,第2期,184~200頁。 4. 胡鴻鈞、李堯英、魏印心、朱蕙忠、陳嘉佑、施之新,1981,中國淡水藻類,1-525頁,上海科學技術出版社,上海市。 5. 黃俊翰,2004,大鵬灣初級生產者對牡蠣架拆除之反應,第二章,13頁,國立中興大學生命科學系碩士論文。 6. 鄭雅鈺,2002,南仁山溪流著生性藻類物種組成、生長量與速率之研究,第一章,1-4頁,國立高雄師範大學生物科學研究所碩士論文。 7. 蔡佩芬,2003,缺磷誘導石蓴 (Ulva lactuca L.) (Ulvales, Chlorophyta)酸性磷酸分解酵素之研究,第一章,1~4頁,國立中山大學,海洋生物研究所。 8. 賴雪端、王建平、葉展廷、蔡昭怡、劉育庭,2003,「四草保護區之藻類多樣性」,嘉南學報,第29期,10~17頁。 9. Adey, W.H., 1987, “Food production in low-nutrient sea,”, Bioscience, Vol.37, No.5.pp.340-348. 10. Adey, W.H. and K. Loveland, 1998, Dynamic Aquaria: Building Living Ecosystems, 2nd ed, Chapter 11, pp.157-170, Academic press, San Diego, California. 11. Adey, W.H., C. Luckett, and K. Jensen, 1993, “Phosphorus removal from natural waters using controlled algal production,” Restoration Ecology, Vol.1, No.1, pp. 29-39. 12. Allan, J.D., 1995, Stream Ecology Structure and Function of Running Waters, Chapter 4, pp.84-99, Chapman & Hall, London. 13. Aloi, J.E., 1990, “A critical review of recent freshwater periphyton field methods,” Canadian Journal of Fisheries and Aquatic Sciences, Vol.47, pp.656-670. 14. Aspila, K.I., H. Agemian, and A.S.Y. Chau, 1976, “A semi-astomated method for the determination of inorganic, organic and total phosphate in sediments,” Analysis, Vol.101, pp.187-197. 15. Bender, J., J.P. Gould, Y. Vatcharapijarn, J.S. Young, and P. Philips, 1994, “Removal of zinc and manganese from contaminated water with cyanobacteria mats,” Water Environment Research, Vol.66, pp.679-683. 16. Biggs, B.J.F., and P. Gerbeaux, 1993, “Periphyton development in relation to macro-scale (geology) and micro-scale (velocity) limiters in two gravel-bed rivers,” New Zealand Journal of Marine and Freshwater Research, Vol.27, pp. 39–53. 17. Biggs, B., and S. Stokseth, 1996, "Hydraulic habitat suitability for periphyton in rivers," Regulated Rivers: Research & Management, Vol.12, pp.251-261. 18. Blum, J.L., 1956, “The ecology of river algae,” Botanical Review Vol.22, pp.291-341. 19. Carlson, R.E., 1977, “A trophic state index for lakes,” Limnology and Oceanography, Vol.22, No.2, pp.361-369. 20. Colwell, R and D.J. Futuyma, 1971. “On the measurement of niche breadth and overlap” Ecology, Vol.52, No.4, pp.567-576. 21. Craggs, R.J., W.H. Adey, B.K. Jessup, and W.J. Oswald, 1996, “A controlled stream mesocosm for tertiary treatment of sewage,” Ecological Engineering, Vol.6, pp. 149-169. 22. Cronk, J.K., and W.J. Mitsch, 1994, “Periphyton productivity on artificial and natural surfaces in constructed freshwater wetlands under different hydrologic regimes,” Aquatic Botany, Vol.48, pp.325-341. 23. Davis, J.C., and G.W. Minshall, 1999, “Nitrogen and phosphorus uptake in two Idaho (USA) headwater wilderness streams,” Oecologia, Vol.119, No.2, pp. 247-255. 24. DeBusk, T.A., K.A. Grace, F.E. Dierberg, S.D. Jackson, M.J. Chimney, and B. Gu, 2004, “An investigation of the limits of phosphorus removal in wetlands: a mesocosm study of a shallow periphyton-dominated treatment system,” Ecological Engineering, Vol.23, pp.1-14. 25. Dodds, W.K., 2003, “The role of periphyton in phosphorus retention in shallow freshwater aquatic systems,” Journal of Phycology, Vol.39, pp.840-849. 26. Dodds, W.K., and E.B. Welch, 2000, “Establishing nutrient criteria in streams,” Journal of the North American Benthological Society, Vol.19, No.1, pp.186-196. 27. Drenner, R.W., D.J. Day, S.J. Basham, J.D. Smith, and S.I. Jensen, 1997, “Ecological Water Treatment System for Removal of Phosphorus and Nitrogen from Polluted Water,” Ecological Applications, Vol.7, No.2, pp. 381-390. 28. Elósegui, A., X. Arana, A. Basaguren, and J. Pozo, 1995, “Self- purification processes along a medium-sized stream,” Environmental Management, Vol.19, No.6, pp.931-939. 29. Fleituch T, A. Starzecka, and T. Bednarz, 2001, “Spatial trends in sediment structure, bacteria, and periphyton communities across a freshwater ecotone,” Hydrobiologia, Vol.464, pp.165-174. 30. Frost, P.C., and J.J. Elser, 2002, “Effects of light and nutrients on the net accumulation and elemental composition of epilithon in boreal lakes,” Freshwater Biology, Vol. 47, pp.173-183. 31. Graham, L.E., and L.W. Wilcox, 2000, Algae, Chapter 2, pp.22-39, New Jersey: Prentice Hall. 32. Hiroyuki H., and Y. Takaaki, 1977, Illustrations of the Japanese fresh-water algae, pp.1-933, Uchida-Rokakuho,Tokyo. 33. Hondzo, M., and H. Wang, 2002, “Effects of turbulence on growth and metabolism of periphyton in a laboratory flume,” Water Resources Research, Vol.38, No.12, 1277. 34. Horner, R.R., and E.B. Welch, 1981, “Stream periphyton development in relation to current velocity and nutrients,” Canadian Journal of Fisheries and Aquatic Sciences, Vol.38, pp.449-457. 35. Hynes, H.B.N., 1970, The Ecology of Running Waters, Chapter 4, pp.57, Toronto: University of Toronto Press. 36. Jarvie, H.P., C. Neal, A. Warwick, J. White, M. Neal, H.D. Wickham, L.K. Hill, and M.C. Andrews, 2002, “Phosphorus uptake into algal biofilms in a lowland chalk river,” The Science of the Total Environment, Vol,282-283, pp.353-373. 37. Johnson, R.A., and D.W. Wichern, 2002, Applied Multivariate Statistical Analysis, 5th ed, Chapter 8, pp.426-476, New Jersey: Prentice Hall. 38. Jordan, T.E., and D.E. Weller, 1996, “Human contributions to terrestrial nitrogen flux,” Bioscience, Vol.46, pp.655-664. 39. Kebede-Westhead, E., C. Pizarro, and W.W. Mulbry, 2003, “Production and nutrient removal by periphyton grown under different loading rates of anaerobically digested flushed dairy,” Journal of Phycology, Vol.39, pp.1275-1282. 40. Kebede-Westhead, E., C. Pizarro, and W.W. Mulbry, 2004, “Treatment of dairy manure effluent using freshwater algae: elemental composition of algal biomass at different manure loading rates,” Journal of Agricultural and Food Chemistry, Vol.52, No.24, pp.7293-7296. 41. Lamberti, GA., and V.H. Resh, 1983, “Stream periphyton and insect herbivores: an experimental study of grazing by a caddisfly population,” Ecology, Vol.64, No.5, pp.1124-1135. 42. Lock, M.A., and P.H. John, 1979, “The effect of flow patterns on uptake of phosphorus by river periphyton,” Limnology and Oceanography, Vol.24, No.2, pp.376-383. 43. McIntire P.C., and H.K. Phinney, 1964, “Laboratory studies of periphyton production and community metabolism in lotic environments,” Ecological Monographs, Vol.35, No.3, pp.237-258. 44. Mulbry, W.W., and A.C. Wilkie, 2001, “Growth of benthic freshwater algae on dairy manures,” Journal of Applied Phycology, Vol.13, pp.301-306. 45. Mulbry, W., E.k. Westhead, C. Pizarro, L. Sikora, 2005, “Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer,” Bioresource Technology, Vol.96, pp.451-458. 46. Mulholland, P.J., and A.D. Rosemond, 1992, “Periphyton response to longitudinal nutrient depletion in a woodland stream: evidence of upstream-downstream linkage,” Journal of the North American Benthological Society, Vol. 11, No.4, pp.405-419. 47. Mulholland, P.J., J.D. Newbold, J.W. Elwood, L.A. Ferren, and J.R. Webster, 1985, “Phosphorus spiralling in a woodland stream: seasonal variations,” Ecology, Vol.66, No.3, pp.1012-1023. 48. Mulholland, P.J., A.D. Steinman, A.V. Palumbo, J.W. Elwood, and D.B. Kirschtel, 1991, “Role of nutrient cycling and herbivory in regulating periphyton communities in laboratory streams,” Ecology, Vol.72, NO.3, pp.966-982. 49. Mulholland, P.J., A.D. Steinman, E.R. Marzolf, D.R. Hart, and D.L. DeAngelis, 1994, “Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams,” Oecologia, Vol.98, pp.40-47. 50. Odum, E.P., J.T. Finn, and E.H. Franz, 1979, “Perturbation theory and the subsidy-stress gradient,” BioScience, Vol.29, No.6, pp. 349-352. 51. Parinet B, A. Lhote, and B. Legube, 2004, “Principal component analysis: an appropriate tool for water quality evaluation and management- application to a tropical lake system,” Ecological Modeling, Vol.178, No.3-4, pp.295-311. 52. Perkins RG., and G.J.C. Underwood, 2000, “Gradients of chlorophyll a and water chemistry along an eutrophic reservoir with determination of the limiting nutrient by in situ nutrient addition,” Water Research, Vol.34, No.3, pp.713-724. 53. Perona E, and P. Mateo, 2006, “Benthic cyanobacterial assemblages as indicators of nutrient enrichment regimes in a Spanish river,” Acta Hydrochimica et Hydrobiologica, Vol.34, No.1-2, pp.67-72. 54. Perona E, I. Bonilla, and P. Mateo, 1999, “Spatial and temporal changes in water quality in a Spanish river,” Science of the Total Environment, Vol.241, pp.75-90. 55. Peterson, B.J., L. Deegan, J. Helfrich, J.E. Hobbie, M. Hullar, B. Moller, T.E. Ford, A. Hershey, A. Hiltner, G. Kipphut, M.A. Lock, D.M. Fiebig, V. McKinley, M.C. Miller, J.R. Vestal, R. Ventullo, and G. Volk. 1993, “Biological Responses of a Tundra River to Fertilization,” Ecology, Vol.74, No.3, pp.653-672. 56. Pizarro, C., E. Kebede-Westhead, and W. Mulbry, 2002, “Nitrogen and phosphorus removal rates using small algal turfs grown with dairy manure,” Journal of Applied Phycology, Vo.14, No.6, pp.469-473. 57. Porrello, S., M. Lenzi, P. Tomassetti, E. Persia, M.G. Finoia, and I. Mercatali, 2003, “Reduction of aquaculture wastewater eutrophication by phytotreatment ponds system Ⅱ. Nitrogen and phosphorus content in macroalgae and sediment,” Aquaculture, Vol.219, pp.531-544. 58. Rectenwald, L.L. and R.W. Drenner, 2000, “Nutrient removal from wastewater effluent using an ecological water treatment system,” Environmental Science Technology, Vol.34, No.3, pp.522-526. 59. Redfield, A.C., 1958, “The biological control of chemical factors in the environment,” American Scientist, Vol.46, pp.205-221. 60. Rier, S.T., and R.J. Stevenson, 2006, “Response of periphytic algae to gradients in nitrogen and phosphorus in streamside mesocosms,” Hydrobiologia, Vol.561, pp.131-147. 61. Round, F.E., 1981, The ecology of algae, Chapter 11, pp.476-483, New York: Cambridge University Press. 62. Sawyer, C.N., P.L. McCarty, and G.F. Parkin, 2003, Chemistry for Environmental Engineering and Science, 5th ed, Chapter 16, pp.536, Boston: McGraw-Hill. 63. Schanz F., and H. Juon, 1983, “Two different methods of evaluating nutrients limitations of periphyton bioassays using water from the River Rhine and eight of its tributaries,” Hydrobiologia, Vol.102, pp.187-195. 64. Schippers, P., J.E. Vermaat, J. de Klein, and W.M. Mooij, 2004, “The effect of atmospheric carbon dioxide elevation on plant growth in freshwater ecosystems,” Ecosystems, Vol.7, No.1, pp.63-74. 65. Scrimgeour, G.J., J.M. Culp, M.L. Bothwell, F.J. Wrona, and M.H. McKee,, 1991, “Mechanisms of algal patch depletion: importance of consumptive and non-consumptive losses in mayfly-diatom systems,” Oecologia, Vol.85, No.3, pp.343-348. 66. Shannon, C. and W. Weaver, 1949, The mathematical theory of communication, pp.54, Illinois: University of Illinois Press. 67. Sharma, S., 1996, Applied Multivariate Techniques, Chapter 4, pp.58-89, New York: John Wiley. 68. Steinman, A.D., 1992, “Does an increase in irradiance influence peri- phyton in a heavily-grazed woodland stream?” Oecologia, Vol.91, No.2, pp.163-170. 69. Stelzer, R.S, and G.A. Lamberti, 2001, “Effects of N : P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition,” Limnology and Oceanography, Vol.46, No.2, pp.356-367. 70. Stevenson, R.J., M.L. Bothwell, and R.L. Lowe, ed., 1996, Algal Ecology : Freshwater Benthic Ecosystems, Chapter19, California: Academic Press. 71. Strahler, A.N., 1957 “Quantitative analysis of watershed geomorphology,” Transactions American Geophysical Union, Vol.38, pp.913-920. 72. Sze, P., 2000, A Biology of the Algae, 3rd ed. Chapter 7, pp.189-190, Boston: WCB/McGraw-Hill. 73. Vinocur A, and F. Unrein, 2000, “Typology of lentic water bodies at Potter Peninsula (King George Island, Antarctica) based on physical-chemical characteristics and phytoplankton communities,” Polar Biology, Vol.23, No.12, pp.858-870. 74. Vymazal, J., 1988, “The use of periphyton communities for nutrient removal from polluted streams,” Hydrobiologia, Vol.166, No.3, pp.225-237. 75. Weitzel, R.L., ed., 1979, Methods and Measurements of Periphyton Communities : A Review, pp.4-9, Baltimore: American Society for Testing and Materials. 76. Whitford, L.A., and G.J. Schumacher, 1961, “Effect of current on mineral uptake and respiration by a fresh-water alga,” Lomnology and Oceanography, Vol.6, No.4, pp.423-425. 77. Whitford, L.A., and G.J. Schumacher, 1964, “Effect of a current on respiration and mineral uptake in Spirogyra and Oedogonium,” Ecology, Vol.45, No.1, pp.168-170. 78. Wilkie, A.C. and W.W. Mulbry, 2002, “Recovery of dairy manure nutrients by benthic freshwater algae,” Bioresource Technology, Vol.84, No.1, pp.81-91.
_version_ 1766171711206588416
spelling ftntaiwanuniv:oai:140.112.114.62:246246/56054 2023-05-15T18:02:03+02:00 藻床淨水技術應用於水中磷之去除研究 Study of Phosphorus Removal from Water Using Algal Turf Scrubber Method 王之佑 Wang, Chih -Yu 張文亮 臺灣大學:生物環境系統工程學研究所 2006 2031412 bytes application/pdf http://ntur.lib.ntu.edu.tw/handle/246246/56054 http://ntur.lib.ntu.edu.tw/bitstream/246246/56054/1/ntu-95-R93622007-1.pdf zh-TW en_US chi eng 1. 王騰崇,2001,大鵬灣竹片上附生藻類生產力之時空變化,第二章,3-4頁,國立中興大學植物學研究所碩士論文。 2. 中華民國行政院環境保護署,2004,環境水質監測年報-水庫水質篇,第一章,壹-2~5頁。 3. 李淑美、陳右人,2002,「氮肥對茶樹生育及品質之影響」,中華農學會報,第3卷,第2期,184~200頁。 4. 胡鴻鈞、李堯英、魏印心、朱蕙忠、陳嘉佑、施之新,1981,中國淡水藻類,1-525頁,上海科學技術出版社,上海市。 5. 黃俊翰,2004,大鵬灣初級生產者對牡蠣架拆除之反應,第二章,13頁,國立中興大學生命科學系碩士論文。 6. 鄭雅鈺,2002,南仁山溪流著生性藻類物種組成、生長量與速率之研究,第一章,1-4頁,國立高雄師範大學生物科學研究所碩士論文。 7. 蔡佩芬,2003,缺磷誘導石蓴 (Ulva lactuca L.) (Ulvales, Chlorophyta)酸性磷酸分解酵素之研究,第一章,1~4頁,國立中山大學,海洋生物研究所。 8. 賴雪端、王建平、葉展廷、蔡昭怡、劉育庭,2003,「四草保護區之藻類多樣性」,嘉南學報,第29期,10~17頁。 9. Adey, W.H., 1987, “Food production in low-nutrient sea,”, Bioscience, Vol.37, No.5.pp.340-348. 10. Adey, W.H. and K. Loveland, 1998, Dynamic Aquaria: Building Living Ecosystems, 2nd ed, Chapter 11, pp.157-170, Academic press, San Diego, California. 11. Adey, W.H., C. Luckett, and K. Jensen, 1993, “Phosphorus removal from natural waters using controlled algal production,” Restoration Ecology, Vol.1, No.1, pp. 29-39. 12. Allan, J.D., 1995, Stream Ecology Structure and Function of Running Waters, Chapter 4, pp.84-99, Chapman & Hall, London. 13. Aloi, J.E., 1990, “A critical review of recent freshwater periphyton field methods,” Canadian Journal of Fisheries and Aquatic Sciences, Vol.47, pp.656-670. 14. Aspila, K.I., H. Agemian, and A.S.Y. Chau, 1976, “A semi-astomated method for the determination of inorganic, organic and total phosphate in sediments,” Analysis, Vol.101, pp.187-197. 15. Bender, J., J.P. Gould, Y. Vatcharapijarn, J.S. Young, and P. Philips, 1994, “Removal of zinc and manganese from contaminated water with cyanobacteria mats,” Water Environment Research, Vol.66, pp.679-683. 16. Biggs, B.J.F., and P. Gerbeaux, 1993, “Periphyton development in relation to macro-scale (geology) and micro-scale (velocity) limiters in two gravel-bed rivers,” New Zealand Journal of Marine and Freshwater Research, Vol.27, pp. 39–53. 17. Biggs, B., and S. Stokseth, 1996, "Hydraulic habitat suitability for periphyton in rivers," Regulated Rivers: Research & Management, Vol.12, pp.251-261. 18. Blum, J.L., 1956, “The ecology of river algae,” Botanical Review Vol.22, pp.291-341. 19. Carlson, R.E., 1977, “A trophic state index for lakes,” Limnology and Oceanography, Vol.22, No.2, pp.361-369. 20. Colwell, R and D.J. Futuyma, 1971. “On the measurement of niche breadth and overlap” Ecology, Vol.52, No.4, pp.567-576. 21. Craggs, R.J., W.H. Adey, B.K. Jessup, and W.J. Oswald, 1996, “A controlled stream mesocosm for tertiary treatment of sewage,” Ecological Engineering, Vol.6, pp. 149-169. 22. Cronk, J.K., and W.J. Mitsch, 1994, “Periphyton productivity on artificial and natural surfaces in constructed freshwater wetlands under different hydrologic regimes,” Aquatic Botany, Vol.48, pp.325-341. 23. Davis, J.C., and G.W. Minshall, 1999, “Nitrogen and phosphorus uptake in two Idaho (USA) headwater wilderness streams,” Oecologia, Vol.119, No.2, pp. 247-255. 24. DeBusk, T.A., K.A. Grace, F.E. Dierberg, S.D. Jackson, M.J. Chimney, and B. Gu, 2004, “An investigation of the limits of phosphorus removal in wetlands: a mesocosm study of a shallow periphyton-dominated treatment system,” Ecological Engineering, Vol.23, pp.1-14. 25. Dodds, W.K., 2003, “The role of periphyton in phosphorus retention in shallow freshwater aquatic systems,” Journal of Phycology, Vol.39, pp.840-849. 26. Dodds, W.K., and E.B. Welch, 2000, “Establishing nutrient criteria in streams,” Journal of the North American Benthological Society, Vol.19, No.1, pp.186-196. 27. Drenner, R.W., D.J. Day, S.J. Basham, J.D. Smith, and S.I. Jensen, 1997, “Ecological Water Treatment System for Removal of Phosphorus and Nitrogen from Polluted Water,” Ecological Applications, Vol.7, No.2, pp. 381-390. 28. Elósegui, A., X. Arana, A. Basaguren, and J. Pozo, 1995, “Self- purification processes along a medium-sized stream,” Environmental Management, Vol.19, No.6, pp.931-939. 29. Fleituch T, A. Starzecka, and T. Bednarz, 2001, “Spatial trends in sediment structure, bacteria, and periphyton communities across a freshwater ecotone,” Hydrobiologia, Vol.464, pp.165-174. 30. Frost, P.C., and J.J. Elser, 2002, “Effects of light and nutrients on the net accumulation and elemental composition of epilithon in boreal lakes,” Freshwater Biology, Vol. 47, pp.173-183. 31. Graham, L.E., and L.W. Wilcox, 2000, Algae, Chapter 2, pp.22-39, New Jersey: Prentice Hall. 32. Hiroyuki H., and Y. Takaaki, 1977, Illustrations of the Japanese fresh-water algae, pp.1-933, Uchida-Rokakuho,Tokyo. 33. Hondzo, M., and H. Wang, 2002, “Effects of turbulence on growth and metabolism of periphyton in a laboratory flume,” Water Resources Research, Vol.38, No.12, 1277. 34. Horner, R.R., and E.B. Welch, 1981, “Stream periphyton development in relation to current velocity and nutrients,” Canadian Journal of Fisheries and Aquatic Sciences, Vol.38, pp.449-457. 35. Hynes, H.B.N., 1970, The Ecology of Running Waters, Chapter 4, pp.57, Toronto: University of Toronto Press. 36. Jarvie, H.P., C. Neal, A. Warwick, J. White, M. Neal, H.D. Wickham, L.K. Hill, and M.C. Andrews, 2002, “Phosphorus uptake into algal biofilms in a lowland chalk river,” The Science of the Total Environment, Vol,282-283, pp.353-373. 37. Johnson, R.A., and D.W. Wichern, 2002, Applied Multivariate Statistical Analysis, 5th ed, Chapter 8, pp.426-476, New Jersey: Prentice Hall. 38. Jordan, T.E., and D.E. Weller, 1996, “Human contributions to terrestrial nitrogen flux,” Bioscience, Vol.46, pp.655-664. 39. Kebede-Westhead, E., C. Pizarro, and W.W. Mulbry, 2003, “Production and nutrient removal by periphyton grown under different loading rates of anaerobically digested flushed dairy,” Journal of Phycology, Vol.39, pp.1275-1282. 40. Kebede-Westhead, E., C. Pizarro, and W.W. Mulbry, 2004, “Treatment of dairy manure effluent using freshwater algae: elemental composition of algal biomass at different manure loading rates,” Journal of Agricultural and Food Chemistry, Vol.52, No.24, pp.7293-7296. 41. Lamberti, GA., and V.H. Resh, 1983, “Stream periphyton and insect herbivores: an experimental study of grazing by a caddisfly population,” Ecology, Vol.64, No.5, pp.1124-1135. 42. Lock, M.A., and P.H. John, 1979, “The effect of flow patterns on uptake of phosphorus by river periphyton,” Limnology and Oceanography, Vol.24, No.2, pp.376-383. 43. McIntire P.C., and H.K. Phinney, 1964, “Laboratory studies of periphyton production and community metabolism in lotic environments,” Ecological Monographs, Vol.35, No.3, pp.237-258. 44. Mulbry, W.W., and A.C. Wilkie, 2001, “Growth of benthic freshwater algae on dairy manures,” Journal of Applied Phycology, Vol.13, pp.301-306. 45. Mulbry, W., E.k. Westhead, C. Pizarro, L. Sikora, 2005, “Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer,” Bioresource Technology, Vol.96, pp.451-458. 46. Mulholland, P.J., and A.D. Rosemond, 1992, “Periphyton response to longitudinal nutrient depletion in a woodland stream: evidence of upstream-downstream linkage,” Journal of the North American Benthological Society, Vol. 11, No.4, pp.405-419. 47. Mulholland, P.J., J.D. Newbold, J.W. Elwood, L.A. Ferren, and J.R. Webster, 1985, “Phosphorus spiralling in a woodland stream: seasonal variations,” Ecology, Vol.66, No.3, pp.1012-1023. 48. Mulholland, P.J., A.D. Steinman, A.V. Palumbo, J.W. Elwood, and D.B. Kirschtel, 1991, “Role of nutrient cycling and herbivory in regulating periphyton communities in laboratory streams,” Ecology, Vol.72, NO.3, pp.966-982. 49. Mulholland, P.J., A.D. Steinman, E.R. Marzolf, D.R. Hart, and D.L. DeAngelis, 1994, “Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams,” Oecologia, Vol.98, pp.40-47. 50. Odum, E.P., J.T. Finn, and E.H. Franz, 1979, “Perturbation theory and the subsidy-stress gradient,” BioScience, Vol.29, No.6, pp. 349-352. 51. Parinet B, A. Lhote, and B. Legube, 2004, “Principal component analysis: an appropriate tool for water quality evaluation and management- application to a tropical lake system,” Ecological Modeling, Vol.178, No.3-4, pp.295-311. 52. Perkins RG., and G.J.C. Underwood, 2000, “Gradients of chlorophyll a and water chemistry along an eutrophic reservoir with determination of the limiting nutrient by in situ nutrient addition,” Water Research, Vol.34, No.3, pp.713-724. 53. Perona E, and P. Mateo, 2006, “Benthic cyanobacterial assemblages as indicators of nutrient enrichment regimes in a Spanish river,” Acta Hydrochimica et Hydrobiologica, Vol.34, No.1-2, pp.67-72. 54. Perona E, I. Bonilla, and P. Mateo, 1999, “Spatial and temporal changes in water quality in a Spanish river,” Science of the Total Environment, Vol.241, pp.75-90. 55. Peterson, B.J., L. Deegan, J. Helfrich, J.E. Hobbie, M. Hullar, B. Moller, T.E. Ford, A. Hershey, A. Hiltner, G. Kipphut, M.A. Lock, D.M. Fiebig, V. McKinley, M.C. Miller, J.R. Vestal, R. Ventullo, and G. Volk. 1993, “Biological Responses of a Tundra River to Fertilization,” Ecology, Vol.74, No.3, pp.653-672. 56. Pizarro, C., E. Kebede-Westhead, and W. Mulbry, 2002, “Nitrogen and phosphorus removal rates using small algal turfs grown with dairy manure,” Journal of Applied Phycology, Vo.14, No.6, pp.469-473. 57. Porrello, S., M. Lenzi, P. Tomassetti, E. Persia, M.G. Finoia, and I. Mercatali, 2003, “Reduction of aquaculture wastewater eutrophication by phytotreatment ponds system Ⅱ. Nitrogen and phosphorus content in macroalgae and sediment,” Aquaculture, Vol.219, pp.531-544. 58. Rectenwald, L.L. and R.W. Drenner, 2000, “Nutrient removal from wastewater effluent using an ecological water treatment system,” Environmental Science Technology, Vol.34, No.3, pp.522-526. 59. Redfield, A.C., 1958, “The biological control of chemical factors in the environment,” American Scientist, Vol.46, pp.205-221. 60. Rier, S.T., and R.J. Stevenson, 2006, “Response of periphytic algae to gradients in nitrogen and phosphorus in streamside mesocosms,” Hydrobiologia, Vol.561, pp.131-147. 61. Round, F.E., 1981, The ecology of algae, Chapter 11, pp.476-483, New York: Cambridge University Press. 62. Sawyer, C.N., P.L. McCarty, and G.F. Parkin, 2003, Chemistry for Environmental Engineering and Science, 5th ed, Chapter 16, pp.536, Boston: McGraw-Hill. 63. Schanz F., and H. Juon, 1983, “Two different methods of evaluating nutrients limitations of periphyton bioassays using water from the River Rhine and eight of its tributaries,” Hydrobiologia, Vol.102, pp.187-195. 64. Schippers, P., J.E. Vermaat, J. de Klein, and W.M. Mooij, 2004, “The effect of atmospheric carbon dioxide elevation on plant growth in freshwater ecosystems,” Ecosystems, Vol.7, No.1, pp.63-74. 65. Scrimgeour, G.J., J.M. Culp, M.L. Bothwell, F.J. Wrona, and M.H. McKee,, 1991, “Mechanisms of algal patch depletion: importance of consumptive and non-consumptive losses in mayfly-diatom systems,” Oecologia, Vol.85, No.3, pp.343-348. 66. Shannon, C. and W. Weaver, 1949, The mathematical theory of communication, pp.54, Illinois: University of Illinois Press. 67. Sharma, S., 1996, Applied Multivariate Techniques, Chapter 4, pp.58-89, New York: John Wiley. 68. Steinman, A.D., 1992, “Does an increase in irradiance influence peri- phyton in a heavily-grazed woodland stream?” Oecologia, Vol.91, No.2, pp.163-170. 69. Stelzer, R.S, and G.A. Lamberti, 2001, “Effects of N : P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition,” Limnology and Oceanography, Vol.46, No.2, pp.356-367. 70. Stevenson, R.J., M.L. Bothwell, and R.L. Lowe, ed., 1996, Algal Ecology : Freshwater Benthic Ecosystems, Chapter19, California: Academic Press. 71. Strahler, A.N., 1957 “Quantitative analysis of watershed geomorphology,” Transactions American Geophysical Union, Vol.38, pp.913-920. 72. Sze, P., 2000, A Biology of the Algae, 3rd ed. Chapter 7, pp.189-190, Boston: WCB/McGraw-Hill. 73. Vinocur A, and F. Unrein, 2000, “Typology of lentic water bodies at Potter Peninsula (King George Island, Antarctica) based on physical-chemical characteristics and phytoplankton communities,” Polar Biology, Vol.23, No.12, pp.858-870. 74. Vymazal, J., 1988, “The use of periphyton communities for nutrient removal from polluted streams,” Hydrobiologia, Vol.166, No.3, pp.225-237. 75. Weitzel, R.L., ed., 1979, Methods and Measurements of Periphyton Communities : A Review, pp.4-9, Baltimore: American Society for Testing and Materials. 76. Whitford, L.A., and G.J. Schumacher, 1961, “Effect of current on mineral uptake and respiration by a fresh-water alga,” Lomnology and Oceanography, Vol.6, No.4, pp.423-425. 77. Whitford, L.A., and G.J. Schumacher, 1964, “Effect of a current on respiration and mineral uptake in Spirogyra and Oedogonium,” Ecology, Vol.45, No.1, pp.168-170. 78. Wilkie, A.C. and W.W. Mulbry, 2002, “Recovery of dairy manure nutrients by benthic freshwater algae,” Bioresource Technology, Vol.84, No.1, pp.81-91. 藻床淨水技術 附生藻類 磷去除率 溪流 生態工程 algal turf scrubber method periphyton phosphorus removal rate stream ecological engineering thesis 2006 ftntaiwanuniv 2016-02-20T00:02:40Z 附生藻類具有高適應性,可附著在水域任何物體的表面上。即使群落組成容易受到流況、溫度、光照、營養鹽等條件影響而發生改變,附生藻類仍能繼續在原棲地生存繁衍。台灣地區生態工程之型態多屬於淨化高污染水質之人工濕地,然而藻床淨水技術所能應用之層面則更可從畜牧廢水延伸至低污染環境。近年來,許多研究人員利用附生藻類進行水質改善的實驗,並提出令人注目的研究報告。國內水庫優養化現象日益嚴重,然而目前僅有少數人工濕地生態工法應用於集水區溪流之水質淨化。本研究目的即透過翡翠水庫集水區內金瓜寮溪附生藻類進行生長箱實驗以及棲地環境調查,分析附生藻類將水中磷濃度降低的最低極限和應用藻床淨水技術於野外溪流之合適地點。 室內實驗在半封閉狀態下,以批次方式,即在實驗開始進行後便不再添加任何營養鹽。實驗初始正磷酸鹽濃度為4~136 μg/L,總磷濃度為27~168 μg/L。實驗結果顯示,當初始的正磷酸鹽磷濃度在35 μg/L以上,附生藻類族群以細絲型綠藻佔優勢。平均之藻乾重生產量為0.05~0.16 g/m2-day,其有機質重量為0.02~0.11 g/m2-day。在此情況下,藻類可使水中磷酸鹽降低至1~2 μg/L,總磷濃度亦不超過10 μg/L。整體實驗中,水體總磷去除百分比最高為95.17 %。 進行野外調查時,沿金瓜寮溪設置28個採樣點,經過12日培養將附生藻類取回,分析藻類生物量與磷元素含量,並同時進行水質分析與棲地物理因子調查。各採樣點水質與物理環境共22個項目調查所得數據,配合生物指標:藻類磷吸收量,進行主成分分析,取得金瓜寮溪流域的6個主成分因子:鹽分因子、營養因子、溶氧因子、濁度因子、硫酸鹽因子、背景因子。根據第1、2主成份得點圖分析,第4、20、23採樣點為高營養因子區域。其中,第4採樣點為主要點源污染,最適合施用藻床淨水技術。由以上結果可知附生藻類具有降低營養鹽至貧養程度的能力,如在集水區溪流施用附生藻,可有效降低水庫優養化的發生。 With high adaptability, periphyton could adhere to any surface in the water. Although periphytic microcommunities are subject to various environmental factors, including current, temperature, light intensity, and nutrient, the flora remains thriving at habitat. Artificial wetlands are the commonest ecological engineering for highly polluted wastewater treatment in Taiwan. However, algal turf scrubber method could serve more wildly ranges from livestock industrial one to low contaminated water. Researches have been done on the algae-water treatment experiment with significant results in recent years. Eutrophication in water reservoir has become more and more severe in Taiwan. However, only few artificial wetlands have been built to clean up stream water in the watershed. The purpose of this study was to determine the degree of phosphorus removal by the periphyton incubated in a growth chamber and the proper sites to apply algal turf scrubber method at Jingualiao Creek in Feitsui Reservoir watershed. The laboratory experiment was conducted under semi-enclosed conditions with no further addition of nutrients except initial addition. The onset of initial phosphate concentration ranged from 4 to 136 μg/L, with total phosphorus concentration between 27 and 168 μg/L. After an incubation of 26 days, periphyton community was dominated by filamentous green algae when the initial phosphate concentration was higher than 35 μg/L. The biomass production of periphyton had been as high as 0.05~0.16 g dry weight/m2-day, with ash free dry weight ranging from 0.02~0.11 g/m2-day Under such conditions, phosphate concentration in each culture was reduced to 1~2 μg/L, with total phosphorus concentration lower than 10 μg/L. As a result, the maximum phosphorus removal efficiency has been up to 95.17%. The field research was conducted at Jingualiao Creek in Feitsui Reservoir watershed. After incubated for twelve days, periphyton communities were sampled at 28 sites by artificial substrate and analyzed for biomass and phosphorus content. Water analysis and surveying of habitat physical condition was conducted at the same time. Twenty two environmental variables and bio-index: periphyton phosphorus uptake rate were combined into a data matrix and subjected to the principle component analysis. Six principle components were extracted as salinity factor, nutrient factor, dissolved oxygen factor, turbidity factor, and background factor. With the scatter plot of the first two principle components, the fourth, twentieth, and twenty-third sample site were classified as high nutrient locations. The result suggests that the point source pollution: fourth sample site was the most suitable place to apply algal turf scrubber method because of its high pollution loading. The present study shows that periphyton can remarkably reduce the phosphorus in stream water and thus is able to prevent water reservoirs from eutrophication when it is applied in the watershed. 目錄 I 圖目錄 III 表目錄 IV 中文摘要 V 英文摘要 VII 第一章、序論 1 1.1水庫與優養化 2 1.2附生藻類 2 1.3溪流環境中的附生藻類 3 1.4附生藻類與水中磷 5 1.5附生藻類應用於水質淨化之文獻回顧 6 1.6研究目的 7 第二章、材料與方法 8 2.1試驗區簡介 8 2.2室內實驗附生藻類生長箱 10 2.3室內實驗設計 10 2.4野外棲地調查 11 2.5藻類生物量分析方法 14 2.6室內實驗藻類組成分析 15 2.7水質分析與棲地物理因子調查 15 2.8主成分分析 16 2.9統計分析 19 第三章、結果與討論 20 3.1室內實驗藻類生長箱中藻類種類組成 20 3.2室內實驗藻類生產量 23 3.3室內實驗藻類磷含量百分比分析 25 3.4室內實驗磷去除量 25 3.5金瓜寮溪附生藻類棲地環境主成分分析結果 27 3.6金瓜寮溪附生藻類棲地環境主成份得點圖分析 30 第四章、結論與建議 33 第五章、參考文獻 35 附錄 41 Thesis Polar Biology National Taiwan University Institutional Repository (NTUR)