微生物生物復育時細胞聚集與氫離子釋放的應用

用微生物分解碳氫化合物的污染物,是相當受到重視的環境工程方法。本研究有兩株微生物:NTU-1 Smooth和Rhodococcus erythropolis NTU-1 Rough都可以分解碳氫化合物,還可以用包裹的方式移除大量烷類。經由研究NTU-1 Rough的過程中找到兩種有效提升其結塊移除烷類的方法,分別是在100mL液態礦物培養基裡加入2mL NB (Nutrient Broth)培養基、以及對液態培養基大量通氣。尤其是後者可以有效地提前一天使微生物產生結塊。另外利用增加培養基緩衝能力的方式,可以有效地幫助NTU-1 Rough包覆正十八烷,形成菌塊。 由實驗數據發現,在中性範圍的p...

Full description

Bibliographic Details
Main Authors: 梁茂實, LIANG, MAO-SHIH
Other Authors: 劉懷勝, 臺灣大學:化學工程學研究所
Format: Thesis
Language:Chinese
English
Published: 2007
Subjects:
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/52141
id ftntaiwanuniv:oai:140.112.114.62:246246/52141
record_format openpolar
institution Open Polar
collection National Taiwan University Institutional Repository (NTUR)
op_collection_id ftntaiwanuniv
language Chinese
English
topic 生物復育
生物分解
氫離子
端過濾
bioremediation
biodegradation
proton
dead-end filtration
spellingShingle 生物復育
生物分解
氫離子
端過濾
bioremediation
biodegradation
proton
dead-end filtration
梁茂實
LIANG, MAO-SHIH
微生物生物復育時細胞聚集與氫離子釋放的應用
topic_facet 生物復育
生物分解
氫離子
端過濾
bioremediation
biodegradation
proton
dead-end filtration
description 用微生物分解碳氫化合物的污染物,是相當受到重視的環境工程方法。本研究有兩株微生物:NTU-1 Smooth和Rhodococcus erythropolis NTU-1 Rough都可以分解碳氫化合物,還可以用包裹的方式移除大量烷類。經由研究NTU-1 Rough的過程中找到兩種有效提升其結塊移除烷類的方法,分別是在100mL液態礦物培養基裡加入2mL NB (Nutrient Broth)培養基、以及對液態培養基大量通氣。尤其是後者可以有效地提前一天使微生物產生結塊。另外利用增加培養基緩衝能力的方式,可以有效地幫助NTU-1 Rough包覆正十八烷,形成菌塊。 由實驗數據發現,在中性範圍的pH值環境下,NTU-1 Rough利用長直烷類的量和釋放的氫離子量成明顯的正比關係,且比率正比於碳鍊長度。這個發現未來可以當作測定烷類變化量的簡便工具,以減少分析時的麻煩。在較低pH值環境下NTU-1 Rough和NTU-1 Smooth都會啟動不同的生理機制繼續分解烷類,表示在低pH的狀況下,這兩株微生物還是可以繼續利用烷類,未來在低pH環境的生物復育很有潛力。 此外,本研究發現利用恆壓過濾當作檢測微生物表面性質和狀態是可行的方向。本研究中在低溫缺乏碳源的情況下,NTU-1 Rough和NTU-1 Smooth過濾時比阻的大小都會隨著飢餓狀態時間越長而減小,特別是15天後,NTU-1 Rough的比阻會降至原本的百分之一左右,這表示微生物的表面性質和狀態充分影響過濾比阻。 To biodegrade hydrocarbon chemicals by means of microorganisms is a very noteworthy method in environmental engineering. Both NTU-1 Smooth and Rhodococcus erythropolis NTU-1 Rough can not only degrade hydrocarbons but also remove alkanes efficiently by trapping them in cell-pellets. Through this investigation, we found two methods to enhance the formation of cell-pellets. One is to add 2mL NB (Nutrient Broth) in 100mL MSM (Minimal Salt Medium), and the other is aeration. The former could effectively shorten pellet-forming period by one day. In addition, the increase of MSM buffer capacity was also observed to help NTU-1 Rough form cell pellets when utilizing octadecane. According to this study, the amount of protons released by NTU-1 Rough, under moderate pH, was in proportion to the amount of n-alkane degraded. The ratios depend on the carbon numbers of those alkanes. This discovery provides a novel and easy way to monitor alkane quantity. With low pH, both NTU-1 Rough and NTU-1 Smooth still could utilize alkanes through different physiological mechanisms. The fact that both strains demonstrated bioremediation potential under low pH environment promises their future applications. Evaluating microbial surface properties by a constant-pressure microfiltration found to be feasible. In our work, under low temperature and carbon starvation, the filtration specific resistances of both NTU-1 Rough and NTU-1 Smooth decreased with time dramatically. Especially after 15 days, specific resistance of NTU-1 Rough was reduced to one percent of its original level suggesting that the surface properties had enormous effects on the performance of filtration. 摘要 I ABSTRACT II 目錄 III 表目錄 V 圖目錄 VI 第一章:緒論 1 第二章:文獻回顧 3 2.1 石油工業之污染防治 3 2.2 生物復育簡介 10 2.2.1 污染防治的發展簡介 10 2.2.2 微生物在生物復育的角色 10 2.2.3實際生物復育操作 12 2.3 微生物利用烷類 15 2.3.1 微生物分解烷類的代謝路徑 15 2.3.2 微生物對非水溶相液體(NAPLs)的攝取機制 21 2.4 Rhodococcus erythropolis之研究 23 2.4.1 Rhodococcus菌屬之簡介及應用 23 2.4.2 Rhodococcus erythropolis菌種的介紹與應用 24 2.4.3 文獻中所發現Rhodococcus erythropolis之生理反應 25 2.5 微生物之結塊現象 28 2.6 微生物在端過濾之研究 29 第三章:微生物,藥品與儀器,研究方法 33 3.1 微生物 33 3.2 藥品與儀器 35 3.2.1 藥品 35 3.2.2 儀器 36 3.3 實驗方法 37 3.3.1 微生物之馴養、純化與保存 37 3.3.2 接種微生物之方式 41 3.3.3 烷類的生物降解與生物復育實驗 42 3.3.4 去氧核糖核酸之萃取與電泳 43 3.3.5 微生物恆壓過濾實驗 44 第四章:實驗結果與討論 50 4.1 TN-4中所分離出的第四株微生物—NTU-1 Smooth菌 50 4.2 NTU-1 Smooth分解烷類的能力 54 4.2.1 培養基pH下降的情況 54 4.2.2 烷類移除與生物分解 55 4.2.3 不同烷類下生物分解的細胞乾重 59 4.3 R. erythropolis NTU-1 Rough分解不同烷類的情況 61 4.4 增進形成NTU-1 Rough結塊的方法 67 4.4.1 提高培養基的緩衝能力 68 4.4.1.1 分解正十八烷與培養基緩衝能力 70 4.4.1.2 分解正十四烷與培養基緩衝能力 73 4.4.2 添加NB培養基以增進生長 77 4.4.2.1 正十八烷的生物分解與NB培養基添加 78 4.3.2.2 正十四烷的生物分解與NB培養基添加 82 4.4.3通氣對結塊的影響 86 4.5 分解量與釋放出的氫離子量之間的關係 92 4.5.1 低緩衝能力液態培養基 92 4.5.2 高緩衝能力液態培養基 95 4.5.3 NTU-1 Smooth在高緩衝能力液態培養基中的情況 100 4.6 微過濾與微生物之關係 102 4.6.1 微生物飢餓狀態與過濾比阻的關係 104 4.6.2 施加壓力差與比阻的關係 107 第五章:結論 109 參考文獻 112 附錄 120 A 礦物液態培養基滴定曲線 120 B 氣相層析儀圖譜與校正曲線 122 B.1 各烷類氣相層析圖譜示意圖 122 B.2 各種烷類的GC校正曲線示意圖 125 C 未列入論文中,有在4.5節中出現的實驗組 128 C.1 正十四烷,高緩衝能力培養基,NTU-1 Rough,30℃,100rpm 128 C.2 正十六烷,高緩衝能力培養基,NTU-1 Rough,30℃,100rpm 129 C.3 正十八烷,高緩衝能力培養基,NTU-1 Rough,30℃,100rpm 131
author2 劉懷勝
臺灣大學:化學工程學研究所
format Thesis
author 梁茂實
LIANG, MAO-SHIH
author_facet 梁茂實
LIANG, MAO-SHIH
author_sort 梁茂實
title 微生物生物復育時細胞聚集與氫離子釋放的應用
title_short 微生物生物復育時細胞聚集與氫離子釋放的應用
title_full 微生物生物復育時細胞聚集與氫離子釋放的應用
title_fullStr 微生物生物復育時細胞聚集與氫離子釋放的應用
title_full_unstemmed 微生物生物復育時細胞聚集與氫離子釋放的應用
title_sort 微生物生物復育時細胞聚集與氫離子釋放的應用
publishDate 2007
url http://ntur.lib.ntu.edu.tw/handle/246246/52141
genre Arctic
genre_facet Arctic
op_relation 1. D. T. Gibson, Ed., Microbial Degradation of Organic Compounds (Marcel Dekker, Inc., New York, 1984), pp. 5. 2. E. Riser-Roberts, REMEDIATION OF PETROLEUM CONTAMINATED SOILS--Biological, Physical, and Chemical Processes (LEWIS PUBLISHERS, USA, ed. 1st, 1998), Ch. 2, Ch 5. 3. R. J. Scholze, Jr., Y. C. Wu, E. D. Smith, J. T. Bandy, paper presented at the Process of International Conference Innovative Biological Treatment of Toxic Wastewaters, Arlington, VA., June 24-26 1986. 4. 路汝鋆, 石油化學工業 (徐氏基金會, 台北市, 1980), 第二章. 5. M. Alexander, Biodegradation and Bioremediation (Academic Press, San Diego, ed. 2nd, 1999), Ch. 2, Ch. 5, Ch. 6, Ch. 8, Ch13. 6. D. Mackay, C. McAuliff, "Fate of hydrocarbons discharged at sea," Oil and Chemical Pollution 5: 1-20 (1988). 7. 瑞秋.卡森, 寂靜的春天 (晨星發行, 台中市, ed. 1st, 1997). 8. P. MATTHIESSEN, in TIME. (Mar. 29 1999), vol. 153, No. 12. 9. R. C. Prince, "Petroleum spill bioremediation in marine environments," Critical Reviews in Microbiology 19(4): 217-242 (1993). 10. S. Penet, R. Marchal, A. Sghir, F. Monot, "Biodegradation of hydrocarbon cuts used for diesel oil formulation," Applied Microbiology And Biotechnology 66(1): 40-47 (2004). 11. W. Geissdorfer, S. C. Frosch, G. Haspel, S. Ehrt, W. Hillen, "2 Genes encoding proteins with similarities to rubredoxin and rubredoxin reductase are required for conversion of dodecane to lauric acid in Acinetobacter Calcoaceticus Adp1," Microbiology-UK 141: 1425-1432 (1995). 12. U. Scheller, T. Zimmer, D. Becher, F. Schauer, W. H. Schunck, "Oxygenation cascade in conversion of n-alkanes to alpha,omega-dioic acids catalyzed by Cytochrome p450 52A3," Journal of Biological Chemistry 273(49): 32528-32534 (1998). 13. W. H. Schunck, S. Mauersberger, J. Huth, P. Riege, H. G. Muller, "Function and regulation of Cytochrome P-450 in alkane-assimilating yeast .1. selective-inhibition with carbon-monoxide in growing-cells," Archives of Microbiology 147(3): 240-244 (1987). 14. W. H. Schunck, S. Mauersberger, E. Kargel, J. Huth, H. G. Muller, "Function and regulation of Cytochrome P-450 in alkane-assimilating yeast .2. effect of oxygen-limitation," Archives of Microbiology 147(3): 245-248 (1987). 15. L. Berthe-Corti, S. Fetzner, "Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions," Acta Biotechnologica 22(3-4): 299-336 (2002). 16. D. J. Arp, "Butane metabolism by butane-grown Pseudomonas butanovora," Microbiology-UK 145: 1173-1180 (1999). 17. W. Ashraf, A. Mihdhir, J. C. Murrell, "Bacterial oxidation of propane," FEMS Microbiology Letters 122(1-2): 1-6 (1994). 18. M. P. Pirnik, R. M. Atlas, R. Bartha, "Hydrocarbon metabolism by Brevibacterum erythrogenes - normal and branced alkanes," Journal of Bacteriology 119(3): 868-878 (1974). 19. H. M. Alvarez, M. F. Souto, A. Viale, O. H. Pucci, "Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432," FEMS Microbiology Letters 200(2): 195-200 (2001). 20. H. M. Alvarez, "Relationship between beta-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria," International Biodeterioration & Biodegradation 52(1): 35-42 (2003). 21. M. Singh, J. D. Desai, "Uptake of water insoluble substrates by microorganisms," Journal of Scientific & Industrial Research 45(9): 413-417 (1986). 22. J. D. Van Hamme, O. P. Ward, "Physical and metabolic interactions of Pseudomonas sp strain JA5-B45 and Rhodococcus sp strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them," Applied And Environmental Microbiology 67(10): 4874-4879 (2001). 23. P. Bruheim, H. Bredholt, K. Eimhjellen, "Bacterial degradation of emulsified crude oil and the effect of various surfactants," Canadian Journal of Microbiology 43(1): 17-22 (1997). 24. M. Goodfellow, G. Alderson, J. S. Chun, "Rhodococcal systematics: problems and developments," Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 74(1-3): 3-20 (1998). 25. R. Margesin, D. Labbe, F. Schinner, C. W. Greer, L. G. Whyte, "Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils," Applied And Environmental Microbiology 69(6): 3085-3092 (2003). 26. S. C. Heald, P. F. B. Brandao, R. Hardicre, A. T. Bull, "Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains," Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 80(2): 169-183 (2001). 27. B. R. Langdahl, P. Bisp, K. Ingvorsen, "Nitrile hydrolysis by Rhodococcus erythropolis BL1, an acetonitrile-tolerant strain isolated from a marine sediment," Microbiology-UK 142: 145-154 (1996). 28. L. G. Whyte, A. Schultz, J. B. van Beilen, A. P. Luz, V. Pellizari, D. Labbe, C. W. Greer, "Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils," FEMS Microbiology Ecology 41(2): 141-150 (2002). 29. W. R. Finnerty, "The biology and genetics of the genus Rhodococcus," Annual Review of Microbiology 46: 193-218 (1992). 30. A. M. Warhurst, C. A. Fewson, "Biotransformations catalyzed by the genus Rhodococcus," Critical Reviews in Biotechnology 14(1): 29-73 (1994). 31. F. A. Rainey, J. Burghardt, R. M. Kroppenstedt, S. Klatte, E. Stackebrandt, "Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species," Microbiology-UK 141: 523-528 (1995). 32. M. J. Larkin, R. De Mot, L. A. Kulakov, I. Nagy, "Applied aspects of Rhodococcus genetics," Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 74(1-3): 133-153 (1998). 33. C. C. R. Allen, D. R. Boyd, M. J. Larkin, K. A. Reid, N. D. Sharma, K. Wilson, "Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp strain NCIMB 12038," Applied And Environmental Microbiology 63(1): 151-155 (1997). 34. C. de Carvalho, M. M. R. da Fonseca, "Solvent toxicity in organic-aqueous systems analysed by multivariate analysis," Bioprocess and Biosystems Engineering 26(6): 361-375 (2004). 35. C. de Carvalho, M. M. R. da Fonseca, "Principal component analysis applied to bacterial cell behaviour in the presence of organic solvents," Biocatalysis and Biotransformation 22(3): 203-214 (2004). 36. C. De Carvalho, A. Da Cruz, M. N. Pons, H. Pinheiro, J. M. S. Cabral, M. M. R. Da Fonseca, B. S. Ferreira, P. Fernandes, "Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents," Microscopy Research and Technique 64(3): 215-222 (2004). 37. H. J. Heipieper, F. J. Weber, J. Sikkema, H. Keweloh, J. A. M. Debont, "Mechanisms of resistance of whole cells to toxic organic-solvents," Trends in Biotechnology 12(10): 409-415 (1994). 38. C. de Carvalho, M. M. R. da Fonseca, "Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL 14," FENS Microbiology Ecology 51(3): 389-399 (2005). 39. I. Sokolovska, R. Rozenberg, C. Riez, P. G. Rouxhet, S. N. Agathos, P. Wattiau, "Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1," Applied And Environmental Microbiology 69(12): 7019-7027 (2003). 40. C. de Carvalho, M. M. R. da Fonseca, "The remarkable Rhodococcus erythropolis," Applied Microbiology And Biotechnology 67(6): 715-726 (2005). 41. M. J. Larkin, L. A. Kulakov, C. C. R. Allen, "Biodegradation and Rhodococcus - masters of catabolic versatility," Current Opinion in Biotechnology 16(3): 282-290 (2005). 42. C. Boswell, “The Technology Frontier: Alkane Activation” Chemical Market Report, NY, (1999). 43. A. K. Kulikova, A. M. Bezborodov, "Oxidation of organic compounds by propane monooxygenase of Rhodococcus erythropolis 3/89," Applied Biochemistry and Microbiology 36(3): 227-230 (2000). 44. A. K. Kulikova, A. M. Bezborodov, "Assimilation of propane and characterization of propane monooxygenase from Rhodococcus erythropolis 3/89," Applied Biochemistry and Microbiology 37(2): 164-167 (2001). 45. P. L. A. Overbeeke, P. Schenkels, F. Secundo, J. A. Jongejan, "Biocatalytic synthesis of cyclopropanol from cyclopropyl methyl ketone using whole cells of Rhodococcus erythropolis," Journal of Molecular Catalysis B-Enzymatic 21(1-2): 51-53 (2003). 46. K. Kakii, M. Hasumi, T. Shirakashi, M. Kuriyama, "Involvement of Ca2+ in the flocculation of Kluyvera cryocrescens Ka-103," Journal of Fermentation and Bioengineering 69(4): 224-227 (1990). 47. K. Kakii, E. Sugahara, T. Shirakashi, M. Kuriyama, "Isolation and characterization of a Ca++-dependent floc-forming bacterium," Journal of Fermentation Technology 64(1): 57-62 (1986). 48. Y. Tago, K. Aida, "Exocellular mucopolysaccharide closely related to bacterial floc formation," Applied And Environmental Microbiology 34(3): 308-314 (1977). 49. A. Malik, M. Sakamoto, S. Hanazaki, M. Osawa, T. Suzuki, M. Tochigi, K. Kakii, "Coaggregation among nonflocculating bacteria isolated from activated sludge," Applied And Environmental Microbiology 69(10): 6056-6063 (2003). 50. A. L. Cookson, P. S. Handley, A. E. Jacob, G. K. Watson, C. Allison, "Coaggregation between Prevotella nigrescens and Prevotella intermedia with Actinomyces naeslundii Strains," FEMS Microbiology Letters 132(3): 291-296 (1995). 51. P. E. Kolenbrander, R. N. Andersen, L. V. Holdeman, "Coaggregation of oral bacteroides species with other bacteria - central role in coaggregation bridges and competitions," Infection and Immunity 48(3): 741-746 (1985). 52. G. Reid, J. A. McGroarty, R. Angotti, R. L. Cook, "Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens," Canadian Journal of Microbiology 34(3): 344-351 (1988). 53. N. Iwabuchi, M. Sunairi, H. Anzai, H. Morisaki, M. Nakajima, "Relationships among colony morphotypes, cell-surface properties and bacterial adhesion to substrata in Rhodococcus," Colloids and Surfaces B-Biointerfaces 30(1-2): 51-60 (2003). 54. R. Kurane, K. Hatamochi, T. Kakuno, M. Kiyohara, T. Tajima, M. Hirano, Y. Taniguchi, "Chemical-structure of lipid bioflocculant produced by Rhodococcus erythropolis," Bioscience Biotechnology and Biochemistry 59(9): 1652-1656 (1995). 55. R. Kurane, K. Hatamochi, T. Kakuno, M. Kiyohara, K. Kawaguchi, Y. Mizuno, M. Hirano, Y. Taniguchi, "Purification and characterization of lipid bioflocculant produced by Rhodococcus erythropolis," Bioscience Biotechnology and Biochemistry 58(11): 1977-1982 (1994). 56. R. Kurane, K. Hatamochi, T. Kakuno, M. Kiyohara, M. Hirano, Y. Taniguchi, "Microbial flocculant .7. production of a bioflocculant by Rhodococcus erythropolis S-1 grown on alcohols," Bioscience Biotechnology and Biochemistry 58(2): 428-429 (1994). 57. J. Nakamura, S. Miyashiro, Y. Hirose, "Screening, isolation, and some properties of microbial cell flocculants," Agricultural and Biological Chemistry 40(2): 377-383 (1976). 58. N. Shimizu, Y. Odawara, "Floc-forming bacteria isolated from activated-sludge in high-bod loading treatment," Journal of Fermentation Technology 63(1): 67-71 (1985). 59. H. Takagi, K. Kadowaki, "Flocculant production by Paecilomyces Sp taxonomic studies and culture conditions for production," Agricultural and Biological Chemistry 49(11): 3151-3157 (1985). 60. H. Takagi, K. Kadowaki, "Purification and chemical-properties of a flocculant produced by Paecilomyces," Agricultural and Biological Chemistry 49(11): 3159-3164 (1985). 61. I. S. Kim, J. M. Foght, M. R. Gray, "Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He," Biotechnology and Bioengineering 80(6): 650-659 (2002). 62. A. Malik, M. Sakamoto, T. Ono, K. Kakii, "Coaggregation between Acinetobacter johnsonii S35 and Microbacterium esteraromaticum strains isolated from sewage activated sludge," Journal of Bioscience and Bioengineering 96(1): 10-15 (2003). 63. P. E. Kolenbrander, "Surface recognition among oral bacteria - multigeneric coaggregations and their mediators," Critical Reviews in Microbiology 17(2): 137-159 (1989). 64. H. Lemmer, "Scum in biological wastewater treatment," Acta Hydrochimica Et Hydrobiologica 33(3): 187-187 (2005). 65. H. Lemmer, G. Lind, E. Muller, M. Schade, "Non-famous scum bacteria: biological characterization and troubleshooting," Acta Hydrochimica Et Hydrobiologica 33(3): 197-202 (2005). 66. E. Muller, G. Lind, H. Lemmer, P. A. Wilderer, "Population structure and chemical EPS analyses of activated sludge and scum," Acta Hydrochimica Et Hydrobiologica 33(3): 189-196 (2005). 67. M. Schade, H. Lemmer, "Lipase activities in activated sludge and scum - comparison of new and conventional techniques," Acta Hydrochimica Et Hydrobiologica 33(3): 210-215 (2005). 68. C. Y. Gomec, "Behavior of the anaerobic CSTR in the presence of scum during primary sludge digestion and the role of pH," Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 41(6): 1117-1127 (2006). 69. G. Foley, "A review of factors affecting filter cake properties in dead-end microfiltration of microbial suspensions," Journal of Membrane Science 274(1-2): 38-46 (2006). 70. K. Ohmori, C. E. Glatz, "Effects of pH and ionic strength on microfiltration of C-glutamicum," Journal of Membrane Science 153(1): 23-32 (1999). 71. K. Ohmori, C. E. Glatz, "Effect of carbon source on microfiltration of Corynebacterium glutamicum," Journal of Membrane Science 171(2): 263-271 (2000). 72. Y. Okamoto, K. Ohmori, C. E. Glatz, "Harvest time effects on membrane cake resistance of Escherichia coli broth," Journal of Membrane Science 190(1): 93-106 (2001). 73. T. Oolman, T. C. Liu, "Filtration properties of mycelial microbial broths," Biotechnology Progress 7(6): 534-539 (1991). 74. 盧曉鳳, 油品之生物分解--煉油廠廢水之實際應用, 碩士, 化學工程學系, 國立台灣大學 (2000). 75. 何崇麟, 利用單一菌株(Rhodococcus erythropolis NTU1)與混合菌株(TN-4)處理正十四烷之研究, 碩士, 化學工程學系, 國立台灣大學 (2005). 76. 林詩凱, 利用混合菌株(TN-4)與單一菌株(Rhodococcus erythropolis NTU-1)處理正十六烷之研究, 碩士, 化學工程學系, 國立台灣大學 (2005). 77. 張緯農, 利用混合菌株(TN-4)處理異十九烷之研究, 碩士, 化學工程學系, 國立台灣大學 (2003). 78. L. A. Sayavedra-Soto, W. N. Chang, T. K. Lin, C. L. Ho, H. S. Liu, "Alkane utilization by Rhodococcus strain NTU-1 alone and in its natural association with Bacillus fusiformis L-1 and Ochrobactrum sp," Biotechnology Progress 22(5): 1368-1373 (2006). 79. 蕭嘉賢, 蛋白質微過濾程序中阻力成長之分析, 博士, 化學工程學系, 國立台灣大學 (2004). 80. K. Eales, J. L. Nielsen, C. Kragelund, R. Seviour, P. H. Nielsen, "The in situ physiology of pine tree like organisms (PTLO) in activated sludge foams," Acta Hydrochimica Et Hydrobiologica 33(3): 203-209 (2005). 81. T. Hug, M. Ziranke, H. Siegrist, "Dynamics of population and scumming on a full-scale wastewater treatment plant in Switzerland," Acta Hydrochimica Et Hydrobiologica 33(3): 216-222 (2005). 82. M. T. Madigan, J. M. Martinko, J. Parker, Brock Biology of Microorganisms (Prentice Hall, NJ, ed. 10, 2003), 157-163. 83. 劉志文, 碩士, 化學工程所, 國立台灣大學 (2007). 84. M. Rosenberg, D. Gutnick, E. Rosenberg, "Adherence of bacteria to hydrocarbons - a simple method for measuring cell-surface hydrophobicity," FEMS Microbiology Letters 9(1): 29-33 (1980). 85. M. Rosenberg, "Microbial adhesion to hydrocarbons: twenty-five years of doing MATH," FENS Microbiology Letters 262(2): 129-134 (2006). 86. A. G. Moat, J. W. Foster, M. P. PSpector, Microbial Physiology (Wiley-Liss, Inc., New York, ed. 4, 2002), 419-423. 87. D. L. Jones, K. Kielland, "Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils," Soil Biology & Biochemistry 34(2): 209-219 (2002). 88. D. G. Karpouzas, A. Walker, R. J. Froud-Williams, D. S. H. Drennan, "Evidence for the enhanced biodegradation of ethoprophos and carbofuran in soils from Greece and the UK," Pesticide Science 55(3): 301-311 (1999). 89. C. D. Adams, S. J. Randtke, "Ozonation by-products of atrazine in synthetic and natural-waters," Environmental Science & Technology 26(11): 2218-2227 (1992). 90. M. H. Fu, M. Alexander, "Biodegradation of styrene in samples of natural environments," Environmental Science & Technology 26(8): 1540-1544 (1992). 91. T. Nystrom, "Starvation, cessation of growth and bacterial aging," Current Opinion in Microbiology 2(2): 214-219 (1999). 92. N. Kunihiro, M. Haruki, K. Takano, M. Morikawa, S. Kanaya, "Isolation and characterization of Rhodococcus sp strains TNP2 and T12 that degrade 2,6,10,14-tetramethylpentadecane (pristane) at moderately low temperatures," Journal of Biotechnology 115(2): 129-136 (2005). 93. S. L. Sanin, F. D. Sanin, J. D. Bryers, "Effect of starvation on the adhesive properties of xenobiotic degrading bacteria," Process Biochemistry 38(6): 909-914 (2003).
_version_ 1766302710368305152
spelling ftntaiwanuniv:oai:140.112.114.62:246246/52141 2023-05-15T14:28:33+02:00 微生物生物復育時細胞聚集與氫離子釋放的應用 The Applications of Cell-Pellets Forming and Protons Releasing in Microbial Bioremediation 梁茂實 LIANG, MAO-SHIH 劉懷勝 臺灣大學:化學工程學研究所 2007 http://ntur.lib.ntu.edu.tw/handle/246246/52141 zh-TW en_US chi eng 1. D. T. Gibson, Ed., Microbial Degradation of Organic Compounds (Marcel Dekker, Inc., New York, 1984), pp. 5. 2. E. Riser-Roberts, REMEDIATION OF PETROLEUM CONTAMINATED SOILS--Biological, Physical, and Chemical Processes (LEWIS PUBLISHERS, USA, ed. 1st, 1998), Ch. 2, Ch 5. 3. R. J. Scholze, Jr., Y. C. Wu, E. D. Smith, J. T. Bandy, paper presented at the Process of International Conference Innovative Biological Treatment of Toxic Wastewaters, Arlington, VA., June 24-26 1986. 4. 路汝鋆, 石油化學工業 (徐氏基金會, 台北市, 1980), 第二章. 5. M. Alexander, Biodegradation and Bioremediation (Academic Press, San Diego, ed. 2nd, 1999), Ch. 2, Ch. 5, Ch. 6, Ch. 8, Ch13. 6. D. Mackay, C. McAuliff, "Fate of hydrocarbons discharged at sea," Oil and Chemical Pollution 5: 1-20 (1988). 7. 瑞秋.卡森, 寂靜的春天 (晨星發行, 台中市, ed. 1st, 1997). 8. P. MATTHIESSEN, in TIME. (Mar. 29 1999), vol. 153, No. 12. 9. R. C. Prince, "Petroleum spill bioremediation in marine environments," Critical Reviews in Microbiology 19(4): 217-242 (1993). 10. S. Penet, R. Marchal, A. Sghir, F. Monot, "Biodegradation of hydrocarbon cuts used for diesel oil formulation," Applied Microbiology And Biotechnology 66(1): 40-47 (2004). 11. W. Geissdorfer, S. C. Frosch, G. Haspel, S. Ehrt, W. Hillen, "2 Genes encoding proteins with similarities to rubredoxin and rubredoxin reductase are required for conversion of dodecane to lauric acid in Acinetobacter Calcoaceticus Adp1," Microbiology-UK 141: 1425-1432 (1995). 12. U. Scheller, T. Zimmer, D. Becher, F. Schauer, W. H. Schunck, "Oxygenation cascade in conversion of n-alkanes to alpha,omega-dioic acids catalyzed by Cytochrome p450 52A3," Journal of Biological Chemistry 273(49): 32528-32534 (1998). 13. W. H. Schunck, S. Mauersberger, J. Huth, P. Riege, H. G. Muller, "Function and regulation of Cytochrome P-450 in alkane-assimilating yeast .1. selective-inhibition with carbon-monoxide in growing-cells," Archives of Microbiology 147(3): 240-244 (1987). 14. W. H. Schunck, S. Mauersberger, E. Kargel, J. Huth, H. G. Muller, "Function and regulation of Cytochrome P-450 in alkane-assimilating yeast .2. effect of oxygen-limitation," Archives of Microbiology 147(3): 245-248 (1987). 15. L. Berthe-Corti, S. Fetzner, "Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions," Acta Biotechnologica 22(3-4): 299-336 (2002). 16. D. J. Arp, "Butane metabolism by butane-grown Pseudomonas butanovora," Microbiology-UK 145: 1173-1180 (1999). 17. W. Ashraf, A. Mihdhir, J. C. Murrell, "Bacterial oxidation of propane," FEMS Microbiology Letters 122(1-2): 1-6 (1994). 18. M. P. Pirnik, R. M. Atlas, R. Bartha, "Hydrocarbon metabolism by Brevibacterum erythrogenes - normal and branced alkanes," Journal of Bacteriology 119(3): 868-878 (1974). 19. H. M. Alvarez, M. F. Souto, A. Viale, O. H. Pucci, "Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432," FEMS Microbiology Letters 200(2): 195-200 (2001). 20. H. M. Alvarez, "Relationship between beta-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria," International Biodeterioration & Biodegradation 52(1): 35-42 (2003). 21. M. Singh, J. D. Desai, "Uptake of water insoluble substrates by microorganisms," Journal of Scientific & Industrial Research 45(9): 413-417 (1986). 22. J. D. Van Hamme, O. P. Ward, "Physical and metabolic interactions of Pseudomonas sp strain JA5-B45 and Rhodococcus sp strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them," Applied And Environmental Microbiology 67(10): 4874-4879 (2001). 23. P. Bruheim, H. Bredholt, K. Eimhjellen, "Bacterial degradation of emulsified crude oil and the effect of various surfactants," Canadian Journal of Microbiology 43(1): 17-22 (1997). 24. M. Goodfellow, G. Alderson, J. S. Chun, "Rhodococcal systematics: problems and developments," Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 74(1-3): 3-20 (1998). 25. R. Margesin, D. Labbe, F. Schinner, C. W. Greer, L. G. Whyte, "Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils," Applied And Environmental Microbiology 69(6): 3085-3092 (2003). 26. S. C. Heald, P. F. B. Brandao, R. Hardicre, A. T. Bull, "Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains," Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 80(2): 169-183 (2001). 27. B. R. Langdahl, P. Bisp, K. Ingvorsen, "Nitrile hydrolysis by Rhodococcus erythropolis BL1, an acetonitrile-tolerant strain isolated from a marine sediment," Microbiology-UK 142: 145-154 (1996). 28. L. G. Whyte, A. Schultz, J. B. van Beilen, A. P. Luz, V. Pellizari, D. Labbe, C. W. Greer, "Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils," FEMS Microbiology Ecology 41(2): 141-150 (2002). 29. W. R. Finnerty, "The biology and genetics of the genus Rhodococcus," Annual Review of Microbiology 46: 193-218 (1992). 30. A. M. Warhurst, C. A. Fewson, "Biotransformations catalyzed by the genus Rhodococcus," Critical Reviews in Biotechnology 14(1): 29-73 (1994). 31. F. A. Rainey, J. Burghardt, R. M. Kroppenstedt, S. Klatte, E. Stackebrandt, "Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species," Microbiology-UK 141: 523-528 (1995). 32. M. J. Larkin, R. De Mot, L. A. Kulakov, I. Nagy, "Applied aspects of Rhodococcus genetics," Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 74(1-3): 133-153 (1998). 33. C. C. R. Allen, D. R. Boyd, M. J. Larkin, K. A. Reid, N. D. Sharma, K. Wilson, "Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp strain NCIMB 12038," Applied And Environmental Microbiology 63(1): 151-155 (1997). 34. C. de Carvalho, M. M. R. da Fonseca, "Solvent toxicity in organic-aqueous systems analysed by multivariate analysis," Bioprocess and Biosystems Engineering 26(6): 361-375 (2004). 35. C. de Carvalho, M. M. R. da Fonseca, "Principal component analysis applied to bacterial cell behaviour in the presence of organic solvents," Biocatalysis and Biotransformation 22(3): 203-214 (2004). 36. C. De Carvalho, A. Da Cruz, M. N. Pons, H. Pinheiro, J. M. S. Cabral, M. M. R. Da Fonseca, B. S. Ferreira, P. Fernandes, "Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents," Microscopy Research and Technique 64(3): 215-222 (2004). 37. H. J. Heipieper, F. J. Weber, J. Sikkema, H. Keweloh, J. A. M. Debont, "Mechanisms of resistance of whole cells to toxic organic-solvents," Trends in Biotechnology 12(10): 409-415 (1994). 38. C. de Carvalho, M. M. R. da Fonseca, "Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL 14," FENS Microbiology Ecology 51(3): 389-399 (2005). 39. I. Sokolovska, R. Rozenberg, C. Riez, P. G. Rouxhet, S. N. Agathos, P. Wattiau, "Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1," Applied And Environmental Microbiology 69(12): 7019-7027 (2003). 40. C. de Carvalho, M. M. R. da Fonseca, "The remarkable Rhodococcus erythropolis," Applied Microbiology And Biotechnology 67(6): 715-726 (2005). 41. M. J. Larkin, L. A. Kulakov, C. C. R. Allen, "Biodegradation and Rhodococcus - masters of catabolic versatility," Current Opinion in Biotechnology 16(3): 282-290 (2005). 42. C. Boswell, “The Technology Frontier: Alkane Activation” Chemical Market Report, NY, (1999). 43. A. K. Kulikova, A. M. Bezborodov, "Oxidation of organic compounds by propane monooxygenase of Rhodococcus erythropolis 3/89," Applied Biochemistry and Microbiology 36(3): 227-230 (2000). 44. A. K. Kulikova, A. M. Bezborodov, "Assimilation of propane and characterization of propane monooxygenase from Rhodococcus erythropolis 3/89," Applied Biochemistry and Microbiology 37(2): 164-167 (2001). 45. P. L. A. Overbeeke, P. Schenkels, F. Secundo, J. A. Jongejan, "Biocatalytic synthesis of cyclopropanol from cyclopropyl methyl ketone using whole cells of Rhodococcus erythropolis," Journal of Molecular Catalysis B-Enzymatic 21(1-2): 51-53 (2003). 46. K. Kakii, M. Hasumi, T. Shirakashi, M. Kuriyama, "Involvement of Ca2+ in the flocculation of Kluyvera cryocrescens Ka-103," Journal of Fermentation and Bioengineering 69(4): 224-227 (1990). 47. K. Kakii, E. Sugahara, T. Shirakashi, M. Kuriyama, "Isolation and characterization of a Ca++-dependent floc-forming bacterium," Journal of Fermentation Technology 64(1): 57-62 (1986). 48. Y. Tago, K. Aida, "Exocellular mucopolysaccharide closely related to bacterial floc formation," Applied And Environmental Microbiology 34(3): 308-314 (1977). 49. A. Malik, M. Sakamoto, S. Hanazaki, M. Osawa, T. Suzuki, M. Tochigi, K. Kakii, "Coaggregation among nonflocculating bacteria isolated from activated sludge," Applied And Environmental Microbiology 69(10): 6056-6063 (2003). 50. A. L. Cookson, P. S. Handley, A. E. Jacob, G. K. Watson, C. Allison, "Coaggregation between Prevotella nigrescens and Prevotella intermedia with Actinomyces naeslundii Strains," FEMS Microbiology Letters 132(3): 291-296 (1995). 51. P. E. Kolenbrander, R. N. Andersen, L. V. Holdeman, "Coaggregation of oral bacteroides species with other bacteria - central role in coaggregation bridges and competitions," Infection and Immunity 48(3): 741-746 (1985). 52. G. Reid, J. A. McGroarty, R. Angotti, R. L. Cook, "Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens," Canadian Journal of Microbiology 34(3): 344-351 (1988). 53. N. Iwabuchi, M. Sunairi, H. Anzai, H. Morisaki, M. Nakajima, "Relationships among colony morphotypes, cell-surface properties and bacterial adhesion to substrata in Rhodococcus," Colloids and Surfaces B-Biointerfaces 30(1-2): 51-60 (2003). 54. R. Kurane, K. Hatamochi, T. Kakuno, M. Kiyohara, T. Tajima, M. Hirano, Y. Taniguchi, "Chemical-structure of lipid bioflocculant produced by Rhodococcus erythropolis," Bioscience Biotechnology and Biochemistry 59(9): 1652-1656 (1995). 55. R. Kurane, K. Hatamochi, T. Kakuno, M. Kiyohara, K. Kawaguchi, Y. Mizuno, M. Hirano, Y. Taniguchi, "Purification and characterization of lipid bioflocculant produced by Rhodococcus erythropolis," Bioscience Biotechnology and Biochemistry 58(11): 1977-1982 (1994). 56. R. Kurane, K. Hatamochi, T. Kakuno, M. Kiyohara, M. Hirano, Y. Taniguchi, "Microbial flocculant .7. production of a bioflocculant by Rhodococcus erythropolis S-1 grown on alcohols," Bioscience Biotechnology and Biochemistry 58(2): 428-429 (1994). 57. J. Nakamura, S. Miyashiro, Y. Hirose, "Screening, isolation, and some properties of microbial cell flocculants," Agricultural and Biological Chemistry 40(2): 377-383 (1976). 58. N. Shimizu, Y. Odawara, "Floc-forming bacteria isolated from activated-sludge in high-bod loading treatment," Journal of Fermentation Technology 63(1): 67-71 (1985). 59. H. Takagi, K. Kadowaki, "Flocculant production by Paecilomyces Sp taxonomic studies and culture conditions for production," Agricultural and Biological Chemistry 49(11): 3151-3157 (1985). 60. H. Takagi, K. Kadowaki, "Purification and chemical-properties of a flocculant produced by Paecilomyces," Agricultural and Biological Chemistry 49(11): 3159-3164 (1985). 61. I. S. Kim, J. M. Foght, M. R. Gray, "Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He," Biotechnology and Bioengineering 80(6): 650-659 (2002). 62. A. Malik, M. Sakamoto, T. Ono, K. Kakii, "Coaggregation between Acinetobacter johnsonii S35 and Microbacterium esteraromaticum strains isolated from sewage activated sludge," Journal of Bioscience and Bioengineering 96(1): 10-15 (2003). 63. P. E. Kolenbrander, "Surface recognition among oral bacteria - multigeneric coaggregations and their mediators," Critical Reviews in Microbiology 17(2): 137-159 (1989). 64. H. Lemmer, "Scum in biological wastewater treatment," Acta Hydrochimica Et Hydrobiologica 33(3): 187-187 (2005). 65. H. Lemmer, G. Lind, E. Muller, M. Schade, "Non-famous scum bacteria: biological characterization and troubleshooting," Acta Hydrochimica Et Hydrobiologica 33(3): 197-202 (2005). 66. E. Muller, G. Lind, H. Lemmer, P. A. Wilderer, "Population structure and chemical EPS analyses of activated sludge and scum," Acta Hydrochimica Et Hydrobiologica 33(3): 189-196 (2005). 67. M. Schade, H. Lemmer, "Lipase activities in activated sludge and scum - comparison of new and conventional techniques," Acta Hydrochimica Et Hydrobiologica 33(3): 210-215 (2005). 68. C. Y. Gomec, "Behavior of the anaerobic CSTR in the presence of scum during primary sludge digestion and the role of pH," Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 41(6): 1117-1127 (2006). 69. G. Foley, "A review of factors affecting filter cake properties in dead-end microfiltration of microbial suspensions," Journal of Membrane Science 274(1-2): 38-46 (2006). 70. K. Ohmori, C. E. Glatz, "Effects of pH and ionic strength on microfiltration of C-glutamicum," Journal of Membrane Science 153(1): 23-32 (1999). 71. K. Ohmori, C. E. Glatz, "Effect of carbon source on microfiltration of Corynebacterium glutamicum," Journal of Membrane Science 171(2): 263-271 (2000). 72. Y. Okamoto, K. Ohmori, C. E. Glatz, "Harvest time effects on membrane cake resistance of Escherichia coli broth," Journal of Membrane Science 190(1): 93-106 (2001). 73. T. Oolman, T. C. Liu, "Filtration properties of mycelial microbial broths," Biotechnology Progress 7(6): 534-539 (1991). 74. 盧曉鳳, 油品之生物分解--煉油廠廢水之實際應用, 碩士, 化學工程學系, 國立台灣大學 (2000). 75. 何崇麟, 利用單一菌株(Rhodococcus erythropolis NTU1)與混合菌株(TN-4)處理正十四烷之研究, 碩士, 化學工程學系, 國立台灣大學 (2005). 76. 林詩凱, 利用混合菌株(TN-4)與單一菌株(Rhodococcus erythropolis NTU-1)處理正十六烷之研究, 碩士, 化學工程學系, 國立台灣大學 (2005). 77. 張緯農, 利用混合菌株(TN-4)處理異十九烷之研究, 碩士, 化學工程學系, 國立台灣大學 (2003). 78. L. A. Sayavedra-Soto, W. N. Chang, T. K. Lin, C. L. Ho, H. S. Liu, "Alkane utilization by Rhodococcus strain NTU-1 alone and in its natural association with Bacillus fusiformis L-1 and Ochrobactrum sp," Biotechnology Progress 22(5): 1368-1373 (2006). 79. 蕭嘉賢, 蛋白質微過濾程序中阻力成長之分析, 博士, 化學工程學系, 國立台灣大學 (2004). 80. K. Eales, J. L. Nielsen, C. Kragelund, R. Seviour, P. H. Nielsen, "The in situ physiology of pine tree like organisms (PTLO) in activated sludge foams," Acta Hydrochimica Et Hydrobiologica 33(3): 203-209 (2005). 81. T. Hug, M. Ziranke, H. Siegrist, "Dynamics of population and scumming on a full-scale wastewater treatment plant in Switzerland," Acta Hydrochimica Et Hydrobiologica 33(3): 216-222 (2005). 82. M. T. Madigan, J. M. Martinko, J. Parker, Brock Biology of Microorganisms (Prentice Hall, NJ, ed. 10, 2003), 157-163. 83. 劉志文, 碩士, 化學工程所, 國立台灣大學 (2007). 84. M. Rosenberg, D. Gutnick, E. Rosenberg, "Adherence of bacteria to hydrocarbons - a simple method for measuring cell-surface hydrophobicity," FEMS Microbiology Letters 9(1): 29-33 (1980). 85. M. Rosenberg, "Microbial adhesion to hydrocarbons: twenty-five years of doing MATH," FENS Microbiology Letters 262(2): 129-134 (2006). 86. A. G. Moat, J. W. Foster, M. P. PSpector, Microbial Physiology (Wiley-Liss, Inc., New York, ed. 4, 2002), 419-423. 87. D. L. Jones, K. Kielland, "Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils," Soil Biology & Biochemistry 34(2): 209-219 (2002). 88. D. G. Karpouzas, A. Walker, R. J. Froud-Williams, D. S. H. Drennan, "Evidence for the enhanced biodegradation of ethoprophos and carbofuran in soils from Greece and the UK," Pesticide Science 55(3): 301-311 (1999). 89. C. D. Adams, S. J. Randtke, "Ozonation by-products of atrazine in synthetic and natural-waters," Environmental Science & Technology 26(11): 2218-2227 (1992). 90. M. H. Fu, M. Alexander, "Biodegradation of styrene in samples of natural environments," Environmental Science & Technology 26(8): 1540-1544 (1992). 91. T. Nystrom, "Starvation, cessation of growth and bacterial aging," Current Opinion in Microbiology 2(2): 214-219 (1999). 92. N. Kunihiro, M. Haruki, K. Takano, M. Morikawa, S. Kanaya, "Isolation and characterization of Rhodococcus sp strains TNP2 and T12 that degrade 2,6,10,14-tetramethylpentadecane (pristane) at moderately low temperatures," Journal of Biotechnology 115(2): 129-136 (2005). 93. S. L. Sanin, F. D. Sanin, J. D. Bryers, "Effect of starvation on the adhesive properties of xenobiotic degrading bacteria," Process Biochemistry 38(6): 909-914 (2003). 生物復育 生物分解 氫離子 端過濾 bioremediation biodegradation proton dead-end filtration thesis 2007 ftntaiwanuniv 2016-02-19T23:52:31Z 用微生物分解碳氫化合物的污染物,是相當受到重視的環境工程方法。本研究有兩株微生物:NTU-1 Smooth和Rhodococcus erythropolis NTU-1 Rough都可以分解碳氫化合物,還可以用包裹的方式移除大量烷類。經由研究NTU-1 Rough的過程中找到兩種有效提升其結塊移除烷類的方法,分別是在100mL液態礦物培養基裡加入2mL NB (Nutrient Broth)培養基、以及對液態培養基大量通氣。尤其是後者可以有效地提前一天使微生物產生結塊。另外利用增加培養基緩衝能力的方式,可以有效地幫助NTU-1 Rough包覆正十八烷,形成菌塊。 由實驗數據發現,在中性範圍的pH值環境下,NTU-1 Rough利用長直烷類的量和釋放的氫離子量成明顯的正比關係,且比率正比於碳鍊長度。這個發現未來可以當作測定烷類變化量的簡便工具,以減少分析時的麻煩。在較低pH值環境下NTU-1 Rough和NTU-1 Smooth都會啟動不同的生理機制繼續分解烷類,表示在低pH的狀況下,這兩株微生物還是可以繼續利用烷類,未來在低pH環境的生物復育很有潛力。 此外,本研究發現利用恆壓過濾當作檢測微生物表面性質和狀態是可行的方向。本研究中在低溫缺乏碳源的情況下,NTU-1 Rough和NTU-1 Smooth過濾時比阻的大小都會隨著飢餓狀態時間越長而減小,特別是15天後,NTU-1 Rough的比阻會降至原本的百分之一左右,這表示微生物的表面性質和狀態充分影響過濾比阻。 To biodegrade hydrocarbon chemicals by means of microorganisms is a very noteworthy method in environmental engineering. Both NTU-1 Smooth and Rhodococcus erythropolis NTU-1 Rough can not only degrade hydrocarbons but also remove alkanes efficiently by trapping them in cell-pellets. Through this investigation, we found two methods to enhance the formation of cell-pellets. One is to add 2mL NB (Nutrient Broth) in 100mL MSM (Minimal Salt Medium), and the other is aeration. The former could effectively shorten pellet-forming period by one day. In addition, the increase of MSM buffer capacity was also observed to help NTU-1 Rough form cell pellets when utilizing octadecane. According to this study, the amount of protons released by NTU-1 Rough, under moderate pH, was in proportion to the amount of n-alkane degraded. The ratios depend on the carbon numbers of those alkanes. This discovery provides a novel and easy way to monitor alkane quantity. With low pH, both NTU-1 Rough and NTU-1 Smooth still could utilize alkanes through different physiological mechanisms. The fact that both strains demonstrated bioremediation potential under low pH environment promises their future applications. Evaluating microbial surface properties by a constant-pressure microfiltration found to be feasible. In our work, under low temperature and carbon starvation, the filtration specific resistances of both NTU-1 Rough and NTU-1 Smooth decreased with time dramatically. Especially after 15 days, specific resistance of NTU-1 Rough was reduced to one percent of its original level suggesting that the surface properties had enormous effects on the performance of filtration. 摘要 I ABSTRACT II 目錄 III 表目錄 V 圖目錄 VI 第一章:緒論 1 第二章:文獻回顧 3 2.1 石油工業之污染防治 3 2.2 生物復育簡介 10 2.2.1 污染防治的發展簡介 10 2.2.2 微生物在生物復育的角色 10 2.2.3實際生物復育操作 12 2.3 微生物利用烷類 15 2.3.1 微生物分解烷類的代謝路徑 15 2.3.2 微生物對非水溶相液體(NAPLs)的攝取機制 21 2.4 Rhodococcus erythropolis之研究 23 2.4.1 Rhodococcus菌屬之簡介及應用 23 2.4.2 Rhodococcus erythropolis菌種的介紹與應用 24 2.4.3 文獻中所發現Rhodococcus erythropolis之生理反應 25 2.5 微生物之結塊現象 28 2.6 微生物在端過濾之研究 29 第三章:微生物,藥品與儀器,研究方法 33 3.1 微生物 33 3.2 藥品與儀器 35 3.2.1 藥品 35 3.2.2 儀器 36 3.3 實驗方法 37 3.3.1 微生物之馴養、純化與保存 37 3.3.2 接種微生物之方式 41 3.3.3 烷類的生物降解與生物復育實驗 42 3.3.4 去氧核糖核酸之萃取與電泳 43 3.3.5 微生物恆壓過濾實驗 44 第四章:實驗結果與討論 50 4.1 TN-4中所分離出的第四株微生物—NTU-1 Smooth菌 50 4.2 NTU-1 Smooth分解烷類的能力 54 4.2.1 培養基pH下降的情況 54 4.2.2 烷類移除與生物分解 55 4.2.3 不同烷類下生物分解的細胞乾重 59 4.3 R. erythropolis NTU-1 Rough分解不同烷類的情況 61 4.4 增進形成NTU-1 Rough結塊的方法 67 4.4.1 提高培養基的緩衝能力 68 4.4.1.1 分解正十八烷與培養基緩衝能力 70 4.4.1.2 分解正十四烷與培養基緩衝能力 73 4.4.2 添加NB培養基以增進生長 77 4.4.2.1 正十八烷的生物分解與NB培養基添加 78 4.3.2.2 正十四烷的生物分解與NB培養基添加 82 4.4.3通氣對結塊的影響 86 4.5 分解量與釋放出的氫離子量之間的關係 92 4.5.1 低緩衝能力液態培養基 92 4.5.2 高緩衝能力液態培養基 95 4.5.3 NTU-1 Smooth在高緩衝能力液態培養基中的情況 100 4.6 微過濾與微生物之關係 102 4.6.1 微生物飢餓狀態與過濾比阻的關係 104 4.6.2 施加壓力差與比阻的關係 107 第五章:結論 109 參考文獻 112 附錄 120 A 礦物液態培養基滴定曲線 120 B 氣相層析儀圖譜與校正曲線 122 B.1 各烷類氣相層析圖譜示意圖 122 B.2 各種烷類的GC校正曲線示意圖 125 C 未列入論文中,有在4.5節中出現的實驗組 128 C.1 正十四烷,高緩衝能力培養基,NTU-1 Rough,30℃,100rpm 128 C.2 正十六烷,高緩衝能力培養基,NTU-1 Rough,30℃,100rpm 129 C.3 正十八烷,高緩衝能力培養基,NTU-1 Rough,30℃,100rpm 131 Thesis Arctic National Taiwan University Institutional Repository (NTUR)