船用金屬三明治結構抗撞能力研究

在巨觀的船舶結構模型中,雙層底與雙層殼結構,均屬金屬三明治結構。過去由於電銲技術與設備的限制,高度低於人高的金屬三明治很少被採用,近年來由雷射銲接技術的精進與設備經濟化的趨勢,先進雷射銲接鋼三明治結構在歐美造船界再度被重視。三明治結構特性如結構強度的均勻性、同樣彎曲強度的重量輕量化與厚度降低、加工表面的優值化、夾層預留空間的應用等,比傳統的肋骨加強板,深樑結構、以及雙層殼結構更具優勢。本文著重在船舶碰撞問題,對金屬三明治結構的研究重點也在抗撞能力研究,比較不同夾心結構在抗撞能力上的不同。 本文先探討格狀夾心與桁架夾心之三明治結構的抗撞能力,將兩者之抗撞阻力與結構消能特性與單一平板互相比較,並將...

Full description

Bibliographic Details
Main Authors: 郭獻堯, Hsien-yao, Guo
Other Authors: 洪振發, 臺灣大學:工程科學及海洋工程學研究所
Format: Thesis
Language:Chinese
English
Published: 2007
Subjects:
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/51105
http://ntur.lib.ntu.edu.tw/bitstream/246246/51105/1/ntu-96-R94525015-1.pdf
Description
Summary:在巨觀的船舶結構模型中,雙層底與雙層殼結構,均屬金屬三明治結構。過去由於電銲技術與設備的限制,高度低於人高的金屬三明治很少被採用,近年來由雷射銲接技術的精進與設備經濟化的趨勢,先進雷射銲接鋼三明治結構在歐美造船界再度被重視。三明治結構特性如結構強度的均勻性、同樣彎曲強度的重量輕量化與厚度降低、加工表面的優值化、夾層預留空間的應用等,比傳統的肋骨加強板,深樑結構、以及雙層殼結構更具優勢。本文著重在船舶碰撞問題,對金屬三明治結構的研究重點也在抗撞能力研究,比較不同夾心結構在抗撞能力上的不同。 本文先探討格狀夾心與桁架夾心之三明治結構的抗撞能力,將兩者之抗撞阻力與結構消能特性與單一平板互相比較,並將有限元素法分析結果與McShane(2005)之試驗結果比較其阻抗力與撞擊深度分佈趨勢。接著選擇Paik(1999)系列合金蜂巢狀三明治結構試驗模型之部分有限元素進行撞擊分析,比較分析結果與試驗結果之差異。最後以相同的材料重量為基礎,選擇格狀夾心、桁架夾心、蜂巢狀三明治板與肋骨加強板,進行有限元素分析以比較四者抗撞阻力與消能曲線。 Generally, the double bottom and double hull of ships are two types of metal sandwich structures. In the past decades, because of the limitation of the welding technology and the size of facilities, the metal sandwich structures with depth less than human’s height were difficult to be constructed. Recently, the technology of laser welding are growing up and its investments are strongly reduced, the metal sandwich structure are taken into consideration by the American and European ship yards. The advantageous of sandwich structure such as the uniformity of strength, lighter weight for the same bending strength and the reserved space within double hull , are superior to conventional structures. The paper focus on ship collision problems, and hence the crashworthiness of metal sandwich structure was examined, and different type of core structures are compared. In this paper, impact responses of sandwich structure with square-honeycomb core and truss-core were analyzed first. Both resistant force and energy dissipation for the two sandwich types structures are compared with monolithic plate with the same weight. The results are compared with experimental results by McShane (2005) to varify the tendency of resistant force versus penetrated depth. Subsequently, some experimental models from the series test of aluminum honeycomb sandwich structures by Paik(1999) are selected no case studies and the FE-analysis were perfomed. The analyzed results were compared with the experiment results to confirm their difference. Finally, resistant force and energy dissipation of sandwich structures with different core structures with the same weight are compared. 摘要 第一章 導論 1 1.1研究動機與目的 1 1.2文獻回顧 3 1.3研究方法 8 第二章 船體結構的基本力學行為 10 2.1材料力學特性 11 2.2應變率對材料的影響 14 2.3極限強度與網格大小的關係 15 2.4船體結構雙層殼遭受側向撞擊的破壞模式 17 第三章 格狀夾心與桁架夾心三明治結構抗撞能力比較 23 3.1 有限元素模型介紹及分析過程 24 3.1.1 格狀夾心模型 25 3.1.2 桁架夾心模型 31 3.1.3 等重量平板 37 3.2 比較與討論 40 第四章 蜂巢狀夾心板三明治結構抗撞能力分析 44 4.1 分析模型之蜂巢狀結構介紹 44 4.1.1 三點彎曲試驗 47 4.1.2 軸向擠壓下之剪切與褶皺試驗 49 4.2 有限元素模型分析比較 54 4.2.1 三點彎曲試驗 55 4.2.2. 軸向擠壓下之褶皺試驗 63 4.3 討論 68 第五章 不同夾心型態金屬三明治結構抗撞能力比較 69 5.1 有限元素模型介紹 69 5.2 分析結果比較 72 5.3 三種不同三明治結構與肋骨加強板比較 74 第六章 結論及展望 78 6.1 結果討論 78 6.2 未來展望 79 參考文獻 80 圖目錄 圖1.1 擱淺事件 1 圖1.2 船舶遭受側向撞擊 2 圖1.3 NSWC進行有關擱淺的力學實驗(Simonsen 1997) 5 圖1.4 船側結構受碰撞的數值分析(SSC 2005) 6 圖1.5 蜂巢狀三明治結構負載試驗 7 圖2.1 船舶碰撞的二個研究方向 10 圖2.2 鋼材的應力-應變曲線示意圖 12 圖2.3 (a)應力-應變雙線性材料模型 12 圖2.3 (b)應力-應變剛塑性材料模型 13 圖2.4 應變率對材料的影響 14 圖2.5 單軸拉伸試驗試片 15 圖2.6 拉伸試驗片不同網格大小的比較 16 圖2.7 不同網格大小對應的破壞應變(Kitamura 2001) 17 圖2.8 雙層殼的三種側向撞擊位置 19 圖2.9 拉伸破壞示意圖 20 圖2.10 穿透破壞示意圖 20 圖2.11 摺皺破壞示意圖 21 圖2.12 交叉肋骨壓潰破壞示意圖 22 圖3.2 格狀夾心結構有限元素模型 25 圖3.3 格狀邊界條件節點設定 26 圖3.4 格狀夾心模型LS-DYNA分析撞擊阻力與撞擊深度分佈度 28 圖3.5 格狀夾心結構吸能與撞擊深度分佈圖 28 圖3.6 格狀夾心模型破壞情形分析結果(待續) 29 圖3.6 格狀夾心模型破壞情形分析結果(續) 30 圖3.7 桁架夾心結構示意圖 31 圖3.8 桁架夾心三明治結構有限元素模型 32 圖3.9 桁架夾心結構邊界條件節點設定 33 圖3.10 桁架夾心結構LS-DYNA分析撞擊阻力與撞擊深度分佈圖 34 圖3.11 桁架夾心結構吸能與撞擊深度分佈圖 34 圖3.12 桁架夾心結構遭撞擊破壞情形示意圖 36 圖3.13 平板結構有限元素模型圖示 37 圖3.14 平板結構LS-DYNA分析撞擊阻力與撞擊深度分佈圖 38 圖3.15 平板結構吸能與撞擊深度分佈圖 39 圖3.18 試驗之撞擊深度與結構阻抗力曲線 42 圖3.19 McShane(2005)衝擊試驗示意圖 43 圖4.1 三明治結構以及傳統單層結構示意圖 45 圖4.2 蜂巢狀三明治結構模型 45 圖4.3 一個單位的蜂巢狀結構 46 圖4.4 三明治板三點彎曲試驗的示意圖 48 圖4.5 三點彎曲試驗負載與凹陷深度的關係圖(Paik 1999) 49 圖4.6 三明治結構軸向擠壓試驗示意圖 50 圖4.7 不同夾心結構高度對於阻力曲線的影響(Paik 1999) 51 圖4.8 不同夾心結構厚度對於阻力曲線的影響(Paik 1999) 52 圖4.9 試件尺寸長寬比對於阻力曲線的影響(Paik 1999) 53 圖4.10 有限元素模型 55 圖4.12 三點彎曲試驗有限元素模型破壞情形 58 圖4.13 Paik試驗照片(上)與本文LS-DYNA模型(下)比較 59 圖4.15 三點彎曲試驗不同撞擊深度側視圖 62 圖4.16 有限元素模型(正視與側視圖) 63 圖4.17 本文LS-DYNA分析與試驗結果比對 65 圖4.18 軸向試驗有限元素模型破壞情形(待續) 66 圖4.18 軸向試驗有限元素模型破壞情形(續) 67 圖4.19 軸向試驗結果照片與本文LS-DYNA分析結果比較 67 圖5.1 有限元素模型及邊界條件設定 70 圖5.2 不同三明治結構之抗撞阻力曲線 72 圖5.3 抗撞阻力趨勢比較 73 圖5.4 不同三明治結構吸能曲線比較 73