不均勻地表情況下淺對流的大渦流模擬研究

本文使用台大-普度三維非靜力模式進行海面上淺對流和陸地上淺對流模擬。模擬中,冷空氣通過不均勻海面時,引發海面上的熱對流,對流邊界層因此順著環境風向下游抬升;上游風切較強的區域,出現雲街,並因紊流混合,使垂直風減弱,雲街到下游時,轉換為中尺度對流胞。考慮科氏力時,雲街順著風向向右偏移,對流胞區則是出現明顯的中尺度對流胞。雲型的變化,改變了熱通量的大小;冷空氣的變性過程,同時存在大、中、小不同尺度,彼此交互作用明顯。 二維海風模擬,結果顯示受科氏效應影響,海風通過時間越長,風向偏轉的角度越大,風速也越強;而其上的海風迴流風速較弱,偏轉效應較不明顯。科氏效應除了使海風偏向之外,也減弱海風向內陸延伸的...

Full description

Bibliographic Details
Main Authors: 侯昭平, Hou, Jou-Ping
Other Authors: 許武榮, 臺灣大學:大氣科學研究所
Format: Thesis
Language:Chinese
English
Published: 2006
Subjects:
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/50024
http://ntur.lib.ntu.edu.tw/bitstream/246246/50024/1/ntu-95-D91229002-1.pdf
id ftntaiwanuniv:oai:140.112.114.62:246246/50024
record_format openpolar
institution Open Polar
collection National Taiwan University Institutional Repository (NTUR)
op_collection_id ftntaiwanuniv
language Chinese
English
topic 對流邊界層
雲街
科氏力
海風鋒面
深對流
convective boundary layer
cloudstreet
coriolis force
sea-breeze front
deep convection
spellingShingle 對流邊界層
雲街
科氏力
海風鋒面
深對流
convective boundary layer
cloudstreet
coriolis force
sea-breeze front
deep convection
侯昭平
Hou, Jou-Ping
不均勻地表情況下淺對流的大渦流模擬研究
topic_facet 對流邊界層
雲街
科氏力
海風鋒面
深對流
convective boundary layer
cloudstreet
coriolis force
sea-breeze front
deep convection
description 本文使用台大-普度三維非靜力模式進行海面上淺對流和陸地上淺對流模擬。模擬中,冷空氣通過不均勻海面時,引發海面上的熱對流,對流邊界層因此順著環境風向下游抬升;上游風切較強的區域,出現雲街,並因紊流混合,使垂直風減弱,雲街到下游時,轉換為中尺度對流胞。考慮科氏力時,雲街順著風向向右偏移,對流胞區則是出現明顯的中尺度對流胞。雲型的變化,改變了熱通量的大小;冷空氣的變性過程,同時存在大、中、小不同尺度,彼此交互作用明顯。 二維海風模擬,結果顯示受科氏效應影響,海風通過時間越長,風向偏轉的角度越大,風速也越強;而其上的海風迴流風速較弱,偏轉效應較不明顯。科氏效應除了使海風偏向之外,也減弱海風向內陸延伸的距離和強度。在陸地上的對流邊界層裡,受紊流影響較大,其對流時間尺度短,因此對單一測站的科氏效應較不明顯。由初始背景環境風場敏感測試顯示,初始風場為向岸風時,會增加海風向內陸穿透的距離,並將地表傳送至大氣的熱量,迅速的向下游傳送;初始風場為離岸風的結果則相反。但離岸風能夠縮短海風鋒面合併對流胞的時間,因此海風向內陸推進過程中,海風鋒面的強弱變化變得更為明顯。初始風場為靜風時,海風鋒面合併對流胞所需時間,明顯大於初始風場為離岸風的情況,海風鋒面雖也呈現明顯的強弱變化,但變化週期因此變長。 三維海風模擬中,海風鋒面南北移速不均,彎曲明顯;海風鋒面和對流胞合併時,會受對流胞上積雲影響,改變移動速度;積雲和對流胞本身造成的下沈區,能夠減弱海風鋒面的強度,而海風鋒面和對流胞交互作用時,強弱的改變,能夠成為激發深對流的機制。 Shallow convections are a distinctive system of atmosphere which has 0.5 to 2 km deep and a horizontal length scale of a few to a few tens of kilometers. There are large volumes of the atmosphere occupied by those. Sea-breeze circulation is one of the shallow convections over a heterogeneous surface. Once the sea-breeze circulation is established, the front which induced by the convective boundary layer (CBL) over land during daytime usually propagates onshore and sweeps through the convection cells inside the CBL over land near coastal area. The intensity of the front may change from time to time as it merges with those convection cells, while the front also modifies the basic characteristics of the CBL (such as surface fluxes, cloud thickness, etc). The interaction between the front and the CBL can be very complicated, and the situation differs from cases to cases with different environmental conditions. Extremely cold air outbreak over warm oceans will result in another type of shallow convections. Once the cold air leaves the land surface, it is modified by vertical transfers of heat, momentum and moisture from warm oceans. The resultant transformation of the air mass eventually leads to the formation of clouds which frequently take the form of cloud streets, roughly oriented along the winds in the outbreak. Farther downwind in the outbreak, the cloud streets transform into three-dimensional cells, occasionally of meander form, sometimes as closed cells but most frequently as open cells. However, rolls exist only when the vertical wind shear was bigger than 7 m s-1 km-1, cells exist when the shear was less than 5 m s-1 km-1 (Tsuchiya and Fujita, 1967). The CBL quickly deepens away from the coastline with increasing fetch length and increasing sea surface temperature. As the depth of the CBL changes, the embedded roll vortices (cloud streets) grow in size. A NOAA/Environmental Technology Laboratory Doppler lidar measured the life cycle of the land- and sea-breeze system at Montery Bay, California, in 1987, during the Land-Sea Breeze Experiment (LASBEX). Fine-scale lidar measurements showed the reversal from offshore to onshore flow near the coast, its gradual vertical and horizontal expansion, and a dual structure to the sea-breeze flow. Complicating factors include the effects of inland topography; for example, inland mountain ranges generate their own thermally forced slope flows, which interact with the sea breeze. Along the coast of central California the diurnal behavior is driven by the land-sea contrast and two ranges of mountains. A local-scale temperature contrast at the shoreline drives the earlier, shallow sea breeze, whereas a long coastline with two parallel ranges of heated mountains will produce thermally forced onshore flow at length and depth scales(Darby, 2002). Once the sea-breeze circulation is established, the front which induced by the convective boundary layer over land during daytime usually propagates onshore and sweeps through the convection cells inside the CBL over land near coastal area. The intensity of the front may change from time to time as it merges with those convection cells, while the front also modifies the basic characteristics of the CBL (such as surface fluxes, cloud thickness, etc). The interaction between the front and the CBL can be very complicated, and the situation differs from cases to cases with different environmental conditions. With an extensive observation network, the 1991 Convection and Precipitation/Electrification Experiment (CaPE) have documented the phenomenon for several sea-breeze events in southern Florida, USA. Convection and subsequent precipitation induced by the sea breeze circulations are often observed in Florida peninsula during summer. This study use the NTU/Purdue 3D nonhydrostatic numerical model to simulate shallow convections over a heterogeneous ocean and local circulation and its interaction with CBL over land. The model solves a fully compressible, nonhydrostatic system of equations explicitly with a two-stage forward-backward time integration scheme. Since the numerical procedure is neutral with respect to both sound waves and internal gravity waves, there is no need to impose any time-smoother in the model. Thus, the model results can be very accurate and numerically stable. In addition, the explicit algorithm is particularly suited for parallel computation. Our computer program is efficiently parallelized and it is suited for this very demanding problem in terms of computer resources. 目 錄 摘 要 i 致 謝 ii 目 錄 iii 表說明 vi 圖說明 vii 第一章 前言 1 1.1 研究背景與文獻回顧 1 1.1.1 海面上的淺對流 2 1.1.2 陸地上的淺對流 11 1.2 研究目的 16 第二章 研究工具及方法 28 2.1 模式簡介 28 2.2 預報方程及診斷方程 29 2.3 地表過程 32 2.4 雲物理過程 33 2.5 平行化運算 34 2.6 邊界條件 34 2.7 實驗設計 35 2.7.1 海面上的淺對流 35 2.7.2 陸地上的淺對流 36 2.7.2.1. 二維海風模擬 36 2.7.2.2. 三維海風模擬 37 第三章 海面上的淺對流 42 3.1 對流邊界層的誘發 42 3.1.1 邊界層的成長 42 3.1.2 邊界層隨時間的演化 44 3.2 雲型的轉換 48 3.2.1 雲街的空間分佈 48 3.2.2 雲街轉換為開放性對流胞的物理機制 49 3.2.3 雲街轉換為開放性對流胞的時間尺度 51 3.3 對流邊界層的特性 52 3.3.1 冷空氣的變性 52 3.3.2 能量和水氣傳送的機制 54 3.3.2.1 亂流動能 54 3.3.2.2 C1區和C3區亂流所扮演的角色 55 3.4 不同尺度的交互作用 60 3.5 科氏效應的影響 62 3.6 高解析度模擬 64 第四章 陸地上的淺對流(二維海風模擬) 101 4.1 模擬個案說明 101 4.2 海風鋒面的形成和水平對流卷的演化 101 4.3 科氏效應的影響 103 4.4 環境風場對海風鋒面的影響 104 第五章 陸地上的淺對流(三維海風模擬) 116 5.1 模擬個案說明 116 5.2 三維海風鋒面的形成和發展 116 5.2.1 海風鋒面的三維結構 117 5.2.1.1 水平橫切面分析 117 5.2.1.2 垂直橫切面分析 119 5.2.1.3 海風鋒面的移動速度 120 5.2.1.4 立體結構和氣流特性 120 5.2.1.5 熱動力鋒面 121 5.3 科氏效應的影響 122 5.4 海風鋒面和對流胞的交互作用 123 5.5 環境風對海風的影響 125 第六章 結論 146 6.1 海面上的淺對流 146 6.2 陸地上的淺對流 148 參考文獻 150
author2 許武榮
臺灣大學:大氣科學研究所
format Thesis
author 侯昭平
Hou, Jou-Ping
author_facet 侯昭平
Hou, Jou-Ping
author_sort 侯昭平
title 不均勻地表情況下淺對流的大渦流模擬研究
title_short 不均勻地表情況下淺對流的大渦流模擬研究
title_full 不均勻地表情況下淺對流的大渦流模擬研究
title_fullStr 不均勻地表情況下淺對流的大渦流模擬研究
title_full_unstemmed 不均勻地表情況下淺對流的大渦流模擬研究
title_sort 不均勻地表情況下淺對流的大渦流模擬研究
publishDate 2006
url http://ntur.lib.ntu.edu.tw/handle/246246/50024
http://ntur.lib.ntu.edu.tw/bitstream/246246/50024/1/ntu-95-D91229002-1.pdf
long_lat ENVELOPE(162.217,162.217,-77.667,-77.667)
geographic Darby
geographic_facet Darby
genre Arctic
genre_facet Arctic
op_relation 參考文獻 許武榮與程川芳,1994:寒潮爆發後海洋上中尺度對流胞發展之數值模擬。大氣科學,22,585-602。 許武榮與侯昭平,1997:海風環流與陸地對流邊界層交互影響之數值研究。碩士論文,頁1-3。 許武榮與侯昭平, 1997: 海風環流與陸地對流邊界層交互影響之數值研究。大氣科學, 25, 397-417。 Agee, E. M., and T. S. Chen, 1973: A model for investigating eddy viscosity effects on meso-scale cellular convection, J. Atmos. Sci., 30, 180-189. Agee, E. M., and P. J. Sheu, 1978: MCC and gull flight behaviour, Bound. Layer Meteor., 14, 247-252. Alpert, P., M. Kusuda, and N. Abe, 1984: Anticlockwise rotation, eccentricity and tilt angle of the wind hodograph. Part II: An observational study. J. Atmos. Sci, 41, 3558-3573. Alpers, W., and B. Brummer, 1994: Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite, J. Geophys. Res., 99(C6), 12, 613-12, 621. Angell, J. K., D. H. Pack, and C. R. Dickson, 1968: A Lagrangian study of helical circulations in the planetary boundary layer, J. Atmos. Sci., 25, 707-717. Asai, T., 1972: Thermal instability of a shear flow turning direction with height. J. Met. Soc. Japan, 50, 525-532. Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944–968. ——, and R. M. Wakimoto, 1997: Influence of the synopticscale flow on sea breezes observed during CaPE. Mon. Wea. Rev., 125, 2112–2130. Atkinson, B. W., 1981: Meso-Scale Atmospheric Circulations. Academic Press, 496 pp. ——, and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere, Rev. of Geo., 34, 403-431. Atlas, D., B. Walter, S. H. Chou, and PJ Sheu, 1986: The structure of the unstable marine boundary layer viewed by lidar and aircraft observations. J. Atmos. Sci., 43, 1301–1318. Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 32, 116–125. Benoit, R., 1977: On the integral of the surface layer profile-gradient functions. J. Appl. Meteor., 16, 859–860. Blandchard, D. O., and R. E. Lopez,1985: Spatial patterns of convection in South Florida. Mon. Wea. Rev., 113, 1282-1299. Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys. Space. Phys., 18, 683-697. ——, 1983: The flow in the planetary boundary layer. Eolian Sediments and Processes (M. E. Brookfield and T. S. Ahlbrandt, Eds.), Elsevier Publishers, Amsterdam, 291-310. Brummer, B. and M. Latif, 1985: Some studies on inflection point instability. Beitr. Phys. Atmos., 58, 117-126. ——, and B. Busack, 1990: Convective patterns within a field of stratocumulus, Mon. Wea. Rev., 112, 259–268. ——, and B. Rump, and G. Kruspe, 1992: A cold air outbreak near Spitsbergen in spring time: Boundary layer modification and cloud development, Bound. Layer Meteor., 61, 13-46. Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmosphere surface layer. J. Atmos. Sci., 28, 181-189. Byers, H. R., and H. R. Rodenbush, 1948: Causes of thunderstorms of the Florida peninsula. J. Meteor., 5, 275-280. Carroll, J. J., 1989: Analysis of airborne Doppler lidar measurements of the extended California sea breeze. J. Atmos. Oceanic Technol., 6, 820–831. Chlond, A., 1992: Three-dimensional simulation of cloud street development during a cold air outbreak. Bound.-Layer Meteor., 58, 161–200. Chou, S. H., and M. P. Ferguson, 1991: Heat fluxes and roll circulations over the Western Gulf Stream during an intense cold-air outbreak. Bound.-Layer Meteor., 55, 255-281. Clarke, R. H., 1955: Some observations and comments on the sea breeze. Austr. Meteor. Mag., 11, 47–52. Dailey, P. S., and R. G. Fovell, 1999: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev., 127, 858–878. Darby, L. S., R. M. Banta, and R. A. Pielke, 2002: Comparisons between mesoscale model terrain sensitivity studies and doppler lidar measurements of the sea breeze at Monterey Bay. Mon. Wea. Rev., 130, 2813–2838. Deardoff, J. W., 1980: Stratocumulus-capped mixed layer derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495-527. Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 1180–1210. Etling, D., and R. A. Brown, 1993: Roll vortives in the planetary boundary layer: A review, Bound. Layer Meteor., 65, 215-248. Fisher, E. L., 1960: An observational study of the sea breeze. J. Meteor., 17, 645–660. Frizzola, J. A., and R. L. Fisher, 1963: A series of sea breeze observations in the New York City area. J. Appl. Meteor., 2, 722–739. Fosberg, M. A., and M. J. Schroeder, 1966: Marine air penetration in central California. J. Appl. Meteor., 5, 573-589. Fovell, R. G, and P. S. Dailey, 2001: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part II: Alongshore ambient flow. Mon. Wea. Rev., 129, 2057–2072. ——, 2005: Convective initiation ahead of the sea-breeze front. Mon. Wea. Rev., 133, 264–278. Gadd, A. J., 1978: A split explicit integration scheme for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 104, 569-582. Gentry, R. C., and P. L. Moore, 1954: Relation of local and general wind interaction near the sea coast to time and location of airmass showers. J. Meteor., 11, 507-511. Hatcher, R. W., and J. S. Sawyer, 1947: Sea breeze structure with particular reference to temperature and water vapor gradients and associated radio ducts. Quart. J. Roy. Meteor. Soc., 73, 391-406. Haurwitz, B., 1947: Comments on the sea breeze circulation. J. Meteor., 4, 1–8. Helfand, H. M., and E. Kalnay, 1983: A model to determine open or closed cellular convection, J. Atmos. Sci., 40, 631-650. Houze, R. A., 1993: Cloud dynamics. Academic Press, Washington, 137-195. Hsie, E. Y., R. D. Farley, and H. D. Orville, 1980: Numerical simulation of ice phase convective cloud seeding. J. Appl. Meteor., 19, 950–977. Hsu, S. A., 1969: Mesoscale structure of the Texas coast sea breeze. Report No.16, NSF Grant GA-367 X. Univ. of Texas at Austin, College of Engineering, Atmos. Sciences Grop. 237pp. Hsu, W. R., and W. Y. Sun, 1991: Numerical study of mesoscale cellular convection. Bound. Layer Meteor., 57, 167-186. ——, and ——, 2001: A time-split, forward-backward numerical model for solving a system of nonhydrostatic and compressible equations. Tellus, 53A, 279-299. Hubert, L. F., 1966: Meso-scale cellular convection. Meteor. Satellite Lab. Rep. 37, Natl. Environ. Satellite Cent., Environ. Sci. Serv. Admin., Washington, D. C. Ikawa, M., 1988: Comparison of some schemes for nonhydrostatic models with orography. J. Meteor. Soc. Japan., 66, 753-776. Intrieri, J. M., C. G. Little, W. J. Shaw, R. M. Banta, P. A. Durkee, and R. M. Hardesty, 1990: The Land/Sea Breeze Experiment (LASBEX). Bull. Amer. Meteor. Soc., 71, 656–664. Laird, N. F., D. A. R. Kristovich, R. M. Rauder, H. T. Ochs III and J. Miller, 1995: The Cape Canaveral Sea and River Breezes : Kinematic structure and convective initiation. Mon. Wea. Rev., 123, 2942-2956. LeMone, MA, 1973: The structure and dynamics of horizontal roll vortices in the planetary. boundary layer. J. Atmos. Sci., 30, 1077-1091. ——, 1976: Modulation of turbulence energy by longitudinal rolls in an unstable. planetary boundary layer. J. Atmos. Sci, 33, 1308-1320. ——, and W. T. Pennell, 1976: The relationship of trade-wind cumulus distribution to subcloud-layer fluxes and structure. Mon. Wea. Rev., 104, 524–539. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092. Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070-1096. ——, and D. K. Lilly, 1978: Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., 35, 78-106. Kusuda, M., and P. Alpert, 1983: Anticlockwise rotation of the wind hodograph. Part I: Theoretical Study. J. Atmos. Sci., 40, 487-499. Krueger, A. F., and S. Fritz, 1961: Cellular cloud patterns revealed by Tiros I, Tellus, 13, 1-7. Mason, P. J., and R. I. Sykes, 1982: A two-dimensional numerical study of horizontal roll vortices in an inversion capped boundary layer. Quart. J. Roy. Meteor. Soc., 108, 801–823. ———, and D. J. Thomson, 1987: Large-eddy simulations of the neutral-static-stability planetary boundary layer. Quart. J. Roy. Meteor. Soc., 113, 413–443. Mitsumoto, S., H., Ueda, and H. Ozeo, 1983: A laboratory experiment on the dynamics of the land and sea breeze. J. Atmos. Sci., 40, 1228-1240. Miura, Y., 1986: Aspect ratio of longitudinal rolls and convection cells observed during cold air outbreaks. J. Atmos. Sci., 41, 2052-2062. Moeng, C. H., 1984: A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence. J. Atmos. Sci., 40, 487-499. Müller, G., B. Brümmer, and W. Alpers, 1999: Roll convection within an Arctic cold-air outbreak: interpretation of in situ aircraft measurements and spaceborne SAR imagery by a three-dimensional atmospheric model. Mon. Wea. Rev., 127, 363-380. Nagata, M., and Y. Ogura, 1991: A modeling case study of interaction between heavy precipitation and a low-level jet over Japan in the Baiu season. Mon. Wea. Rev., 119, 1309–1336. Nakane, N., and Y. Sasano, 1986: Structure of a sea-breeze front revealed by scanning lidar observation. J. Meteor. Soc. Japan, 64, 787-792. Neumann, J., 1977: On the rotation rate of the direction of sea and land breezes. J. Atmos. Sci., 34, 1913-1917. ——, 1984: The coriolis force in relation to the sea and land breezes – A historical note. Bulle. Ameri. Meteo. Soc., 34, 1913-1917. Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: A two-dimensional numerical investigation of interaction between sea breezes and deep convection over the Florida peninsula. Mon. Wea. Rev., 119, 298-323. Ninomiya, K., and T. Akiyama, 1976: Structure and heat energy budget of mixed layer capped by inversion during a period of polar outbreak over Kuroshio region. J. Meteor. Soc. Japan, 54, 160–174. Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over south Florida. Mon. Wea. Rev., 102, 115-139. ———, and W. R. Cotton, 1977: Amesoscale analysis over South Florida for a high rainfall event. Mon. Wea. Rev., 105, 343-362. Purdom, J. F. W., 1982: Subjective interpretation of geostationary satellite data for nowcasting. Nowcsting, K. Browning, Ed., Academic Press, 149-156. Raasch, S., 1990: Numerical simulation of the development of the convective boundary layer during a cold air outbreak. Bound.-Layer Meteor., 52, 349–357. Reible, D. D., J. E. Simpson, and P. F. Linden, 1993: The sea breeze and gravity-current frontogenesis. Quart. J. Roy. Meteor. Soc. , 119, 1–16. Renfrew, I. A., and G. W. K. Moore, 1999: An extreme cold-air outbreak over the Labrador sea: Roll vortices and air-sea interaction, Mon. Wea. Rev. 127, 2379–2394. Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206. ———, and ———, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation and development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972. Sheu, P. J., and E. M. Agee, 1977: Kinematic analysis and air-sea heat flux associated with mesoscale cellular convection during AMTEX 75, J. Atmos. Sci., 34, 793-801. Simpson, J. E., and R. E. Britter, 1980: The dynamics of the head of a gravity current advancing over a horizontal surface. J. Fluid Mech., 94, 477-495. ——, D. A. Mansfield, and J. R. Milford, 1977: Inland penetration of sea-breeze fronts. Quart. J. Roy. Meteor. Soc., 103, 47–76. Sykes, R. I., W. S. Lewellen, and D. S. Henn, 1988: A numerical study of the development of cloud street spacing. J. Atmos. Sci., 45, 2556–2569. ———, ———, and———, 1990: Numerical simulation of the boundary layer eddy structure during the cold-air outbreak of GALE IOP2. Mon. Wea. Rev., 118, 363–374. Sun, W. Y., 1980: A forward-backward time integration scheme to treat internal gravity waves. Mon. Wea. Rev., 108, 402-407. ———, and Y. Ogura, 1980: Modeling the evolution of the convective planetary boundary layer. J. Atmos. Sci., 37 , 1558–1572. ———, 1984: Numerical analysis for hydrostatic and nonhydrostatic equations of inertial-internal gravity waves. Mon. Wea. Rev., 112, 259–268. ———, and W. R. Hsu, 1988: Numerical study of a cold air outbreak over the ocean. J. Atmos. Sci., 45, 1205-1227. ———, J. D. Chern, C. C. Wu, and W. R. Hsu, 1991: Numerical simulation of mesoscale circulation in Taiwan and surrounding area. Mon. Wea. Rev., 119, 2558–2573. ———, 1993: Numerical experiments for advection equation. J. Comput. Phys., 108, 264-271. Tsuchiya, K., and T. Fujita, 1967: A satellite meteorological study of evaporation and cloud formation over the western Pacific under the influence of the winter monsoon, J. Meteorol. Soc. Jpn., 45, 232-250. Wakimoto, R. M., and N.T.Atkins,1994: Observations of the sea- breeze front during CaPE. Part Ⅰ: Single-Dopper,satellite and cloud photogrammetry analysis. Mon. Wea. Rev., 122, 1092-1114. Watts, A. J., 1995: Sea-breeze at Thorney island. Meteor. Mag. 84, 42-48. Walter, BA, 1980: Wintertime observations of roll clouds over the Bering Sea,. Mon. Wea. Rev., 108, 2025-2031. Wu, J., 1980: Wind-stress coefficients over sea surface near neutral conditions-A revisit. J. Phys. Oceanorg., 10, 727-740. Yoshikado, H., 1990: Vertical structure of the sea breeze penetrating through a large urban complex. J. Appl. Meteor., 29, 878–891.
_version_ 1766302705221894144
spelling ftntaiwanuniv:oai:140.112.114.62:246246/50024 2023-05-15T14:28:32+02:00 不均勻地表情況下淺對流的大渦流模擬研究 Large-Eddy Simulation of Shallow convection over a heterogeneous surface 侯昭平 Hou, Jou-Ping 許武榮 臺灣大學:大氣科學研究所 2006 14387026 bytes application/pdf http://ntur.lib.ntu.edu.tw/handle/246246/50024 http://ntur.lib.ntu.edu.tw/bitstream/246246/50024/1/ntu-95-D91229002-1.pdf zh-TW en_US chi eng 參考文獻 許武榮與程川芳,1994:寒潮爆發後海洋上中尺度對流胞發展之數值模擬。大氣科學,22,585-602。 許武榮與侯昭平,1997:海風環流與陸地對流邊界層交互影響之數值研究。碩士論文,頁1-3。 許武榮與侯昭平, 1997: 海風環流與陸地對流邊界層交互影響之數值研究。大氣科學, 25, 397-417。 Agee, E. M., and T. S. Chen, 1973: A model for investigating eddy viscosity effects on meso-scale cellular convection, J. Atmos. Sci., 30, 180-189. Agee, E. M., and P. J. Sheu, 1978: MCC and gull flight behaviour, Bound. Layer Meteor., 14, 247-252. Alpert, P., M. Kusuda, and N. Abe, 1984: Anticlockwise rotation, eccentricity and tilt angle of the wind hodograph. Part II: An observational study. J. Atmos. Sci, 41, 3558-3573. Alpers, W., and B. Brummer, 1994: Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite, J. Geophys. Res., 99(C6), 12, 613-12, 621. Angell, J. K., D. H. Pack, and C. R. Dickson, 1968: A Lagrangian study of helical circulations in the planetary boundary layer, J. Atmos. Sci., 25, 707-717. Asai, T., 1972: Thermal instability of a shear flow turning direction with height. J. Met. Soc. Japan, 50, 525-532. Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944–968. ——, and R. M. Wakimoto, 1997: Influence of the synopticscale flow on sea breezes observed during CaPE. Mon. Wea. Rev., 125, 2112–2130. Atkinson, B. W., 1981: Meso-Scale Atmospheric Circulations. Academic Press, 496 pp. ——, and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere, Rev. of Geo., 34, 403-431. Atlas, D., B. Walter, S. H. Chou, and PJ Sheu, 1986: The structure of the unstable marine boundary layer viewed by lidar and aircraft observations. J. Atmos. Sci., 43, 1301–1318. Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 32, 116–125. Benoit, R., 1977: On the integral of the surface layer profile-gradient functions. J. Appl. Meteor., 16, 859–860. Blandchard, D. O., and R. E. Lopez,1985: Spatial patterns of convection in South Florida. Mon. Wea. Rev., 113, 1282-1299. Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys. Space. Phys., 18, 683-697. ——, 1983: The flow in the planetary boundary layer. Eolian Sediments and Processes (M. E. Brookfield and T. S. Ahlbrandt, Eds.), Elsevier Publishers, Amsterdam, 291-310. Brummer, B. and M. Latif, 1985: Some studies on inflection point instability. Beitr. Phys. Atmos., 58, 117-126. ——, and B. Busack, 1990: Convective patterns within a field of stratocumulus, Mon. Wea. Rev., 112, 259–268. ——, and B. Rump, and G. Kruspe, 1992: A cold air outbreak near Spitsbergen in spring time: Boundary layer modification and cloud development, Bound. Layer Meteor., 61, 13-46. Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmosphere surface layer. J. Atmos. Sci., 28, 181-189. Byers, H. R., and H. R. Rodenbush, 1948: Causes of thunderstorms of the Florida peninsula. J. Meteor., 5, 275-280. Carroll, J. J., 1989: Analysis of airborne Doppler lidar measurements of the extended California sea breeze. J. Atmos. Oceanic Technol., 6, 820–831. Chlond, A., 1992: Three-dimensional simulation of cloud street development during a cold air outbreak. Bound.-Layer Meteor., 58, 161–200. Chou, S. H., and M. P. Ferguson, 1991: Heat fluxes and roll circulations over the Western Gulf Stream during an intense cold-air outbreak. Bound.-Layer Meteor., 55, 255-281. Clarke, R. H., 1955: Some observations and comments on the sea breeze. Austr. Meteor. Mag., 11, 47–52. Dailey, P. S., and R. G. Fovell, 1999: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev., 127, 858–878. Darby, L. S., R. M. Banta, and R. A. Pielke, 2002: Comparisons between mesoscale model terrain sensitivity studies and doppler lidar measurements of the sea breeze at Monterey Bay. Mon. Wea. Rev., 130, 2813–2838. Deardoff, J. W., 1980: Stratocumulus-capped mixed layer derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495-527. Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 1180–1210. Etling, D., and R. A. Brown, 1993: Roll vortives in the planetary boundary layer: A review, Bound. Layer Meteor., 65, 215-248. Fisher, E. L., 1960: An observational study of the sea breeze. J. Meteor., 17, 645–660. Frizzola, J. A., and R. L. Fisher, 1963: A series of sea breeze observations in the New York City area. J. Appl. Meteor., 2, 722–739. Fosberg, M. A., and M. J. Schroeder, 1966: Marine air penetration in central California. J. Appl. Meteor., 5, 573-589. Fovell, R. G, and P. S. Dailey, 2001: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part II: Alongshore ambient flow. Mon. Wea. Rev., 129, 2057–2072. ——, 2005: Convective initiation ahead of the sea-breeze front. Mon. Wea. Rev., 133, 264–278. Gadd, A. J., 1978: A split explicit integration scheme for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 104, 569-582. Gentry, R. C., and P. L. Moore, 1954: Relation of local and general wind interaction near the sea coast to time and location of airmass showers. J. Meteor., 11, 507-511. Hatcher, R. W., and J. S. Sawyer, 1947: Sea breeze structure with particular reference to temperature and water vapor gradients and associated radio ducts. Quart. J. Roy. Meteor. Soc., 73, 391-406. Haurwitz, B., 1947: Comments on the sea breeze circulation. J. Meteor., 4, 1–8. Helfand, H. M., and E. Kalnay, 1983: A model to determine open or closed cellular convection, J. Atmos. Sci., 40, 631-650. Houze, R. A., 1993: Cloud dynamics. Academic Press, Washington, 137-195. Hsie, E. Y., R. D. Farley, and H. D. Orville, 1980: Numerical simulation of ice phase convective cloud seeding. J. Appl. Meteor., 19, 950–977. Hsu, S. A., 1969: Mesoscale structure of the Texas coast sea breeze. Report No.16, NSF Grant GA-367 X. Univ. of Texas at Austin, College of Engineering, Atmos. Sciences Grop. 237pp. Hsu, W. R., and W. Y. Sun, 1991: Numerical study of mesoscale cellular convection. Bound. Layer Meteor., 57, 167-186. ——, and ——, 2001: A time-split, forward-backward numerical model for solving a system of nonhydrostatic and compressible equations. Tellus, 53A, 279-299. Hubert, L. F., 1966: Meso-scale cellular convection. Meteor. Satellite Lab. Rep. 37, Natl. Environ. Satellite Cent., Environ. Sci. Serv. Admin., Washington, D. C. Ikawa, M., 1988: Comparison of some schemes for nonhydrostatic models with orography. J. Meteor. Soc. Japan., 66, 753-776. Intrieri, J. M., C. G. Little, W. J. Shaw, R. M. Banta, P. A. Durkee, and R. M. Hardesty, 1990: The Land/Sea Breeze Experiment (LASBEX). Bull. Amer. Meteor. Soc., 71, 656–664. Laird, N. F., D. A. R. Kristovich, R. M. Rauder, H. T. Ochs III and J. Miller, 1995: The Cape Canaveral Sea and River Breezes : Kinematic structure and convective initiation. Mon. Wea. Rev., 123, 2942-2956. LeMone, MA, 1973: The structure and dynamics of horizontal roll vortices in the planetary. boundary layer. J. Atmos. Sci., 30, 1077-1091. ——, 1976: Modulation of turbulence energy by longitudinal rolls in an unstable. planetary boundary layer. J. Atmos. Sci, 33, 1308-1320. ——, and W. T. Pennell, 1976: The relationship of trade-wind cumulus distribution to subcloud-layer fluxes and structure. Mon. Wea. Rev., 104, 524–539. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092. Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070-1096. ——, and D. K. Lilly, 1978: Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., 35, 78-106. Kusuda, M., and P. Alpert, 1983: Anticlockwise rotation of the wind hodograph. Part I: Theoretical Study. J. Atmos. Sci., 40, 487-499. Krueger, A. F., and S. Fritz, 1961: Cellular cloud patterns revealed by Tiros I, Tellus, 13, 1-7. Mason, P. J., and R. I. Sykes, 1982: A two-dimensional numerical study of horizontal roll vortices in an inversion capped boundary layer. Quart. J. Roy. Meteor. Soc., 108, 801–823. ———, and D. J. Thomson, 1987: Large-eddy simulations of the neutral-static-stability planetary boundary layer. Quart. J. Roy. Meteor. Soc., 113, 413–443. Mitsumoto, S., H., Ueda, and H. Ozeo, 1983: A laboratory experiment on the dynamics of the land and sea breeze. J. Atmos. Sci., 40, 1228-1240. Miura, Y., 1986: Aspect ratio of longitudinal rolls and convection cells observed during cold air outbreaks. J. Atmos. Sci., 41, 2052-2062. Moeng, C. H., 1984: A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence. J. Atmos. Sci., 40, 487-499. Müller, G., B. Brümmer, and W. Alpers, 1999: Roll convection within an Arctic cold-air outbreak: interpretation of in situ aircraft measurements and spaceborne SAR imagery by a three-dimensional atmospheric model. Mon. Wea. Rev., 127, 363-380. Nagata, M., and Y. Ogura, 1991: A modeling case study of interaction between heavy precipitation and a low-level jet over Japan in the Baiu season. Mon. Wea. Rev., 119, 1309–1336. Nakane, N., and Y. Sasano, 1986: Structure of a sea-breeze front revealed by scanning lidar observation. J. Meteor. Soc. Japan, 64, 787-792. Neumann, J., 1977: On the rotation rate of the direction of sea and land breezes. J. Atmos. Sci., 34, 1913-1917. ——, 1984: The coriolis force in relation to the sea and land breezes – A historical note. Bulle. Ameri. Meteo. Soc., 34, 1913-1917. Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: A two-dimensional numerical investigation of interaction between sea breezes and deep convection over the Florida peninsula. Mon. Wea. Rev., 119, 298-323. Ninomiya, K., and T. Akiyama, 1976: Structure and heat energy budget of mixed layer capped by inversion during a period of polar outbreak over Kuroshio region. J. Meteor. Soc. Japan, 54, 160–174. Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over south Florida. Mon. Wea. Rev., 102, 115-139. ———, and W. R. Cotton, 1977: Amesoscale analysis over South Florida for a high rainfall event. Mon. Wea. Rev., 105, 343-362. Purdom, J. F. W., 1982: Subjective interpretation of geostationary satellite data for nowcasting. Nowcsting, K. Browning, Ed., Academic Press, 149-156. Raasch, S., 1990: Numerical simulation of the development of the convective boundary layer during a cold air outbreak. Bound.-Layer Meteor., 52, 349–357. Reible, D. D., J. E. Simpson, and P. F. Linden, 1993: The sea breeze and gravity-current frontogenesis. Quart. J. Roy. Meteor. Soc. , 119, 1–16. Renfrew, I. A., and G. W. K. Moore, 1999: An extreme cold-air outbreak over the Labrador sea: Roll vortices and air-sea interaction, Mon. Wea. Rev. 127, 2379–2394. Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206. ———, and ———, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation and development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972. Sheu, P. J., and E. M. Agee, 1977: Kinematic analysis and air-sea heat flux associated with mesoscale cellular convection during AMTEX 75, J. Atmos. Sci., 34, 793-801. Simpson, J. E., and R. E. Britter, 1980: The dynamics of the head of a gravity current advancing over a horizontal surface. J. Fluid Mech., 94, 477-495. ——, D. A. Mansfield, and J. R. Milford, 1977: Inland penetration of sea-breeze fronts. Quart. J. Roy. Meteor. Soc., 103, 47–76. Sykes, R. I., W. S. Lewellen, and D. S. Henn, 1988: A numerical study of the development of cloud street spacing. J. Atmos. Sci., 45, 2556–2569. ———, ———, and———, 1990: Numerical simulation of the boundary layer eddy structure during the cold-air outbreak of GALE IOP2. Mon. Wea. Rev., 118, 363–374. Sun, W. Y., 1980: A forward-backward time integration scheme to treat internal gravity waves. Mon. Wea. Rev., 108, 402-407. ———, and Y. Ogura, 1980: Modeling the evolution of the convective planetary boundary layer. J. Atmos. Sci., 37 , 1558–1572. ———, 1984: Numerical analysis for hydrostatic and nonhydrostatic equations of inertial-internal gravity waves. Mon. Wea. Rev., 112, 259–268. ———, and W. R. Hsu, 1988: Numerical study of a cold air outbreak over the ocean. J. Atmos. Sci., 45, 1205-1227. ———, J. D. Chern, C. C. Wu, and W. R. Hsu, 1991: Numerical simulation of mesoscale circulation in Taiwan and surrounding area. Mon. Wea. Rev., 119, 2558–2573. ———, 1993: Numerical experiments for advection equation. J. Comput. Phys., 108, 264-271. Tsuchiya, K., and T. Fujita, 1967: A satellite meteorological study of evaporation and cloud formation over the western Pacific under the influence of the winter monsoon, J. Meteorol. Soc. Jpn., 45, 232-250. Wakimoto, R. M., and N.T.Atkins,1994: Observations of the sea- breeze front during CaPE. Part Ⅰ: Single-Dopper,satellite and cloud photogrammetry analysis. Mon. Wea. Rev., 122, 1092-1114. Watts, A. J., 1995: Sea-breeze at Thorney island. Meteor. Mag. 84, 42-48. Walter, BA, 1980: Wintertime observations of roll clouds over the Bering Sea,. Mon. Wea. Rev., 108, 2025-2031. Wu, J., 1980: Wind-stress coefficients over sea surface near neutral conditions-A revisit. J. Phys. Oceanorg., 10, 727-740. Yoshikado, H., 1990: Vertical structure of the sea breeze penetrating through a large urban complex. J. Appl. Meteor., 29, 878–891. 對流邊界層 雲街 科氏力 海風鋒面 深對流 convective boundary layer cloudstreet coriolis force sea-breeze front deep convection thesis 2006 ftntaiwanuniv 2016-02-19T23:48:14Z 本文使用台大-普度三維非靜力模式進行海面上淺對流和陸地上淺對流模擬。模擬中,冷空氣通過不均勻海面時,引發海面上的熱對流,對流邊界層因此順著環境風向下游抬升;上游風切較強的區域,出現雲街,並因紊流混合,使垂直風減弱,雲街到下游時,轉換為中尺度對流胞。考慮科氏力時,雲街順著風向向右偏移,對流胞區則是出現明顯的中尺度對流胞。雲型的變化,改變了熱通量的大小;冷空氣的變性過程,同時存在大、中、小不同尺度,彼此交互作用明顯。 二維海風模擬,結果顯示受科氏效應影響,海風通過時間越長,風向偏轉的角度越大,風速也越強;而其上的海風迴流風速較弱,偏轉效應較不明顯。科氏效應除了使海風偏向之外,也減弱海風向內陸延伸的距離和強度。在陸地上的對流邊界層裡,受紊流影響較大,其對流時間尺度短,因此對單一測站的科氏效應較不明顯。由初始背景環境風場敏感測試顯示,初始風場為向岸風時,會增加海風向內陸穿透的距離,並將地表傳送至大氣的熱量,迅速的向下游傳送;初始風場為離岸風的結果則相反。但離岸風能夠縮短海風鋒面合併對流胞的時間,因此海風向內陸推進過程中,海風鋒面的強弱變化變得更為明顯。初始風場為靜風時,海風鋒面合併對流胞所需時間,明顯大於初始風場為離岸風的情況,海風鋒面雖也呈現明顯的強弱變化,但變化週期因此變長。 三維海風模擬中,海風鋒面南北移速不均,彎曲明顯;海風鋒面和對流胞合併時,會受對流胞上積雲影響,改變移動速度;積雲和對流胞本身造成的下沈區,能夠減弱海風鋒面的強度,而海風鋒面和對流胞交互作用時,強弱的改變,能夠成為激發深對流的機制。 Shallow convections are a distinctive system of atmosphere which has 0.5 to 2 km deep and a horizontal length scale of a few to a few tens of kilometers. There are large volumes of the atmosphere occupied by those. Sea-breeze circulation is one of the shallow convections over a heterogeneous surface. Once the sea-breeze circulation is established, the front which induced by the convective boundary layer (CBL) over land during daytime usually propagates onshore and sweeps through the convection cells inside the CBL over land near coastal area. The intensity of the front may change from time to time as it merges with those convection cells, while the front also modifies the basic characteristics of the CBL (such as surface fluxes, cloud thickness, etc). The interaction between the front and the CBL can be very complicated, and the situation differs from cases to cases with different environmental conditions. Extremely cold air outbreak over warm oceans will result in another type of shallow convections. Once the cold air leaves the land surface, it is modified by vertical transfers of heat, momentum and moisture from warm oceans. The resultant transformation of the air mass eventually leads to the formation of clouds which frequently take the form of cloud streets, roughly oriented along the winds in the outbreak. Farther downwind in the outbreak, the cloud streets transform into three-dimensional cells, occasionally of meander form, sometimes as closed cells but most frequently as open cells. However, rolls exist only when the vertical wind shear was bigger than 7 m s-1 km-1, cells exist when the shear was less than 5 m s-1 km-1 (Tsuchiya and Fujita, 1967). The CBL quickly deepens away from the coastline with increasing fetch length and increasing sea surface temperature. As the depth of the CBL changes, the embedded roll vortices (cloud streets) grow in size. A NOAA/Environmental Technology Laboratory Doppler lidar measured the life cycle of the land- and sea-breeze system at Montery Bay, California, in 1987, during the Land-Sea Breeze Experiment (LASBEX). Fine-scale lidar measurements showed the reversal from offshore to onshore flow near the coast, its gradual vertical and horizontal expansion, and a dual structure to the sea-breeze flow. Complicating factors include the effects of inland topography; for example, inland mountain ranges generate their own thermally forced slope flows, which interact with the sea breeze. Along the coast of central California the diurnal behavior is driven by the land-sea contrast and two ranges of mountains. A local-scale temperature contrast at the shoreline drives the earlier, shallow sea breeze, whereas a long coastline with two parallel ranges of heated mountains will produce thermally forced onshore flow at length and depth scales(Darby, 2002). Once the sea-breeze circulation is established, the front which induced by the convective boundary layer over land during daytime usually propagates onshore and sweeps through the convection cells inside the CBL over land near coastal area. The intensity of the front may change from time to time as it merges with those convection cells, while the front also modifies the basic characteristics of the CBL (such as surface fluxes, cloud thickness, etc). The interaction between the front and the CBL can be very complicated, and the situation differs from cases to cases with different environmental conditions. With an extensive observation network, the 1991 Convection and Precipitation/Electrification Experiment (CaPE) have documented the phenomenon for several sea-breeze events in southern Florida, USA. Convection and subsequent precipitation induced by the sea breeze circulations are often observed in Florida peninsula during summer. This study use the NTU/Purdue 3D nonhydrostatic numerical model to simulate shallow convections over a heterogeneous ocean and local circulation and its interaction with CBL over land. The model solves a fully compressible, nonhydrostatic system of equations explicitly with a two-stage forward-backward time integration scheme. Since the numerical procedure is neutral with respect to both sound waves and internal gravity waves, there is no need to impose any time-smoother in the model. Thus, the model results can be very accurate and numerically stable. In addition, the explicit algorithm is particularly suited for parallel computation. Our computer program is efficiently parallelized and it is suited for this very demanding problem in terms of computer resources. 目 錄 摘 要 i 致 謝 ii 目 錄 iii 表說明 vi 圖說明 vii 第一章 前言 1 1.1 研究背景與文獻回顧 1 1.1.1 海面上的淺對流 2 1.1.2 陸地上的淺對流 11 1.2 研究目的 16 第二章 研究工具及方法 28 2.1 模式簡介 28 2.2 預報方程及診斷方程 29 2.3 地表過程 32 2.4 雲物理過程 33 2.5 平行化運算 34 2.6 邊界條件 34 2.7 實驗設計 35 2.7.1 海面上的淺對流 35 2.7.2 陸地上的淺對流 36 2.7.2.1. 二維海風模擬 36 2.7.2.2. 三維海風模擬 37 第三章 海面上的淺對流 42 3.1 對流邊界層的誘發 42 3.1.1 邊界層的成長 42 3.1.2 邊界層隨時間的演化 44 3.2 雲型的轉換 48 3.2.1 雲街的空間分佈 48 3.2.2 雲街轉換為開放性對流胞的物理機制 49 3.2.3 雲街轉換為開放性對流胞的時間尺度 51 3.3 對流邊界層的特性 52 3.3.1 冷空氣的變性 52 3.3.2 能量和水氣傳送的機制 54 3.3.2.1 亂流動能 54 3.3.2.2 C1區和C3區亂流所扮演的角色 55 3.4 不同尺度的交互作用 60 3.5 科氏效應的影響 62 3.6 高解析度模擬 64 第四章 陸地上的淺對流(二維海風模擬) 101 4.1 模擬個案說明 101 4.2 海風鋒面的形成和水平對流卷的演化 101 4.3 科氏效應的影響 103 4.4 環境風場對海風鋒面的影響 104 第五章 陸地上的淺對流(三維海風模擬) 116 5.1 模擬個案說明 116 5.2 三維海風鋒面的形成和發展 116 5.2.1 海風鋒面的三維結構 117 5.2.1.1 水平橫切面分析 117 5.2.1.2 垂直橫切面分析 119 5.2.1.3 海風鋒面的移動速度 120 5.2.1.4 立體結構和氣流特性 120 5.2.1.5 熱動力鋒面 121 5.3 科氏效應的影響 122 5.4 海風鋒面和對流胞的交互作用 123 5.5 環境風對海風的影響 125 第六章 結論 146 6.1 海面上的淺對流 146 6.2 陸地上的淺對流 148 參考文獻 150 Thesis Arctic National Taiwan University Institutional Repository (NTUR) Darby ENVELOPE(162.217,162.217,-77.667,-77.667)