id ftnsoutheastern:oai:nsuworks.nova.edu:occ_facarticles-2024
record_format openpolar
spelling ftnsoutheastern:oai:nsuworks.nova.edu:occ_facarticles-2024 2023-05-15T17:52:01+02:00 Taking the Metabolic Pulse of the World's Coral Reefs Cyronak, Tyler Andersson, Andreas J. Langdon, Chris Albright, Rebecca Bates, Nicholas R. Caldeira, Ken Carlton, Renee Corredor, Jorge E. Dunbar, Rob B. Enochs, Ian Erez, Jonathan Eyre, Bradley D. Gattuso, Jean-Pierre Gledhill, Dwight Kayanne, Hajime Kline, David I. Koweek, David A. Lantz, Coulson Lazar, Boaz Manzello, Derek McMahon, Ashly Melendez, Melissa Page, Heather N. Santos, Isaac R. Schulz, Kai G. Shaw, Emily Silverman, Jacob Suzuki, Atsushi Teneva, Lida Watanabe, Atsushi Yamamoto, Shoji 2018-01-09T08:00:00Z application/pdf https://nsuworks.nova.edu/occ_facarticles/1045 https://nsuworks.nova.edu/cgi/viewcontent.cgi?article=2024&context=occ_facarticles unknown NSUWorks https://nsuworks.nova.edu/occ_facarticles/1045 https://nsuworks.nova.edu/cgi/viewcontent.cgi?article=2024&context=occ_facarticles Marine & Environmental Sciences Faculty Articles Coral reefs Sea water Calcification Marine ecology Carbonates Marine chemistry Ocean acidification Biogeochemistry Marine Biology Oceanography and Atmospheric Sciences and Meteorology article 2018 ftnsoutheastern 2022-04-10T22:05:22Z Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems. Article in Journal/Newspaper Ocean acidification Nova Southeastern University: NSU Works
institution Open Polar
collection Nova Southeastern University: NSU Works
op_collection_id ftnsoutheastern
language unknown
topic Coral reefs
Sea water
Calcification
Marine ecology
Carbonates
Marine chemistry
Ocean acidification
Biogeochemistry
Marine Biology
Oceanography and Atmospheric Sciences and Meteorology
spellingShingle Coral reefs
Sea water
Calcification
Marine ecology
Carbonates
Marine chemistry
Ocean acidification
Biogeochemistry
Marine Biology
Oceanography and Atmospheric Sciences and Meteorology
Cyronak, Tyler
Andersson, Andreas J.
Langdon, Chris
Albright, Rebecca
Bates, Nicholas R.
Caldeira, Ken
Carlton, Renee
Corredor, Jorge E.
Dunbar, Rob B.
Enochs, Ian
Erez, Jonathan
Eyre, Bradley D.
Gattuso, Jean-Pierre
Gledhill, Dwight
Kayanne, Hajime
Kline, David I.
Koweek, David A.
Lantz, Coulson
Lazar, Boaz
Manzello, Derek
McMahon, Ashly
Melendez, Melissa
Page, Heather N.
Santos, Isaac R.
Schulz, Kai G.
Shaw, Emily
Silverman, Jacob
Suzuki, Atsushi
Teneva, Lida
Watanabe, Atsushi
Yamamoto, Shoji
Taking the Metabolic Pulse of the World's Coral Reefs
topic_facet Coral reefs
Sea water
Calcification
Marine ecology
Carbonates
Marine chemistry
Ocean acidification
Biogeochemistry
Marine Biology
Oceanography and Atmospheric Sciences and Meteorology
description Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems.
format Article in Journal/Newspaper
author Cyronak, Tyler
Andersson, Andreas J.
Langdon, Chris
Albright, Rebecca
Bates, Nicholas R.
Caldeira, Ken
Carlton, Renee
Corredor, Jorge E.
Dunbar, Rob B.
Enochs, Ian
Erez, Jonathan
Eyre, Bradley D.
Gattuso, Jean-Pierre
Gledhill, Dwight
Kayanne, Hajime
Kline, David I.
Koweek, David A.
Lantz, Coulson
Lazar, Boaz
Manzello, Derek
McMahon, Ashly
Melendez, Melissa
Page, Heather N.
Santos, Isaac R.
Schulz, Kai G.
Shaw, Emily
Silverman, Jacob
Suzuki, Atsushi
Teneva, Lida
Watanabe, Atsushi
Yamamoto, Shoji
author_facet Cyronak, Tyler
Andersson, Andreas J.
Langdon, Chris
Albright, Rebecca
Bates, Nicholas R.
Caldeira, Ken
Carlton, Renee
Corredor, Jorge E.
Dunbar, Rob B.
Enochs, Ian
Erez, Jonathan
Eyre, Bradley D.
Gattuso, Jean-Pierre
Gledhill, Dwight
Kayanne, Hajime
Kline, David I.
Koweek, David A.
Lantz, Coulson
Lazar, Boaz
Manzello, Derek
McMahon, Ashly
Melendez, Melissa
Page, Heather N.
Santos, Isaac R.
Schulz, Kai G.
Shaw, Emily
Silverman, Jacob
Suzuki, Atsushi
Teneva, Lida
Watanabe, Atsushi
Yamamoto, Shoji
author_sort Cyronak, Tyler
title Taking the Metabolic Pulse of the World's Coral Reefs
title_short Taking the Metabolic Pulse of the World's Coral Reefs
title_full Taking the Metabolic Pulse of the World's Coral Reefs
title_fullStr Taking the Metabolic Pulse of the World's Coral Reefs
title_full_unstemmed Taking the Metabolic Pulse of the World's Coral Reefs
title_sort taking the metabolic pulse of the world's coral reefs
publisher NSUWorks
publishDate 2018
url https://nsuworks.nova.edu/occ_facarticles/1045
https://nsuworks.nova.edu/cgi/viewcontent.cgi?article=2024&context=occ_facarticles
genre Ocean acidification
genre_facet Ocean acidification
op_source Marine & Environmental Sciences Faculty Articles
op_relation https://nsuworks.nova.edu/occ_facarticles/1045
https://nsuworks.nova.edu/cgi/viewcontent.cgi?article=2024&context=occ_facarticles
_version_ 1766159330158051328