The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons

The Eocene–Oligocene transition (EOT) was a climate shift from a largely ice-free greenhouse world to an icehouse climate, involving the first major glaciation of Antarctica and global cooling occurring ∼ 34 million years ago (Ma) and lasting ∼ 790 kyr. The change is marked by a global shift in deep...

Full description

Bibliographic Details
Main Authors: Hutchinson, David K., Coxall, Helen K., Lunt, Daniel J., Steinthorsdottir, Margret, de Boer, Agatha M., Baatsen, Michiel, von der Heydt, Anna, Huber, Matthew, Kennedy-Asser, Alan T., Kunzmann, Lutz, Ladant, Jean-Baptiste, Lear, Caroline H., Moraweck, Karolin, Pearson, Paul N., Piga, Emanuela, Pound, Matthew J., Salzmann, Ulrich, Scher, Howie D., Sijp, Willem P., Śliwińska, Kasia K., Wilson, Paul A., Zhang, Zhongshi
Format: Article in Journal/Newspaper
Language:English
Published: Naturhistoriska riksmuseet, Enheten för paleobiologi 2021
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4339
https://doi.org/10.5194/cp-2020-68
id ftnrm:oai:DiVA.org:nrm-4339
record_format openpolar
institution Open Polar
collection Swedish Museum of Natural History: Publications (DiVA)
op_collection_id ftnrm
language English
topic Eocene-Oligocene transition
palaeoclimate
proxies
modelling
review
Climate Research
Klimatforskning
Meteorology and Atmospheric Sciences
Meteorologi och atmosfärforskning
Geosciences
Multidisciplinary
Multidisciplinär geovetenskap
Other Earth and Related Environmental Sciences
Annan geovetenskap och miljövetenskap
spellingShingle Eocene-Oligocene transition
palaeoclimate
proxies
modelling
review
Climate Research
Klimatforskning
Meteorology and Atmospheric Sciences
Meteorologi och atmosfärforskning
Geosciences
Multidisciplinary
Multidisciplinär geovetenskap
Other Earth and Related Environmental Sciences
Annan geovetenskap och miljövetenskap
Hutchinson, David K.
Coxall, Helen K.
Lunt, Daniel J.
Steinthorsdottir, Margret
de Boer, Agatha M.
Baatsen, Michiel
von der Heydt, Anna
Huber, Matthew
Kennedy-Asser, Alan T.
Kunzmann, Lutz
Ladant, Jean-Baptiste
Lear, Caroline H.
Moraweck, Karolin
Pearson, Paul N.
Piga, Emanuela
Pound, Matthew J.
Salzmann, Ulrich
Scher, Howie D.
Sijp, Willem P.
Śliwińska, Kasia K.
Wilson, Paul A.
Zhang, Zhongshi
The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons
topic_facet Eocene-Oligocene transition
palaeoclimate
proxies
modelling
review
Climate Research
Klimatforskning
Meteorology and Atmospheric Sciences
Meteorologi och atmosfärforskning
Geosciences
Multidisciplinary
Multidisciplinär geovetenskap
Other Earth and Related Environmental Sciences
Annan geovetenskap och miljövetenskap
description The Eocene–Oligocene transition (EOT) was a climate shift from a largely ice-free greenhouse world to an icehouse climate, involving the first major glaciation of Antarctica and global cooling occurring ∼ 34 million years ago (Ma) and lasting ∼ 790 kyr. The change is marked by a global shift in deep-sea δ18O representing a combination of deep-ocean cooling and growth in land ice volume. At the same time, multiple independent proxies for ocean tempera- ture indicate sea surface cooling, and major changes in global fauna and flora record a shift toward more cold-climate- adapted species. The two principal suggested explanations of this transition are a decline in atmospheric CO2 and changes to ocean gateways, while orbital forcing likely influenced the precise timing of the glaciation. Here we review and synthesise proxy evidence of palaeogeography, temperature, ice sheets, ocean circulation and CO2 change from the marine and terrestrial realms. Furthermore, we quantitatively com- pare proxy records of change to an ensemble of climate model simulations of temperature change across the EOT. The simulations compare three forcing mechanisms across the EOT: CO2 decrease, palaeogeographic changes and ice sheet growth. Our model ensemble results demonstrate the need for a global cooling mechanism beyond the imposition of an ice sheet or palaeogeographic changes. We find that CO2 forcing involving a large decrease in CO2 of ca. 40 % (∼ 325 ppm drop) provides the best fit to the available proxy evidence, with ice sheet and palaeogeographic changes play- ing a secondary role. While this large decrease is consistent with some CO2 proxy records (the extreme endmember of decrease), the positive feedback mechanisms on ice growth are so strong that a modest CO2 decrease beyond a critical threshold for ice sheet initiation is well capable of triggering rapid ice sheet growth. Thus, the amplitude of CO2 decrease signalled by our data–model comparison should be consid- ered an upper estimate and perhaps artificially large, not least because the current generation of climate models do not in- clude dynamic ice sheets and in some cases may be under- sensitive to CO2 forcing. The model ensemble also cannot exclude the possibility that palaeogeographic changes could have triggered a reduction in CO2. This research was alsosupported by the Bolin Centre for Climate Research (Research Area 6), and the Danish Council for Independent Research – Natural Sciences (DFF/FNU; grant no. 11-107497)
format Article in Journal/Newspaper
author Hutchinson, David K.
Coxall, Helen K.
Lunt, Daniel J.
Steinthorsdottir, Margret
de Boer, Agatha M.
Baatsen, Michiel
von der Heydt, Anna
Huber, Matthew
Kennedy-Asser, Alan T.
Kunzmann, Lutz
Ladant, Jean-Baptiste
Lear, Caroline H.
Moraweck, Karolin
Pearson, Paul N.
Piga, Emanuela
Pound, Matthew J.
Salzmann, Ulrich
Scher, Howie D.
Sijp, Willem P.
Śliwińska, Kasia K.
Wilson, Paul A.
Zhang, Zhongshi
author_facet Hutchinson, David K.
Coxall, Helen K.
Lunt, Daniel J.
Steinthorsdottir, Margret
de Boer, Agatha M.
Baatsen, Michiel
von der Heydt, Anna
Huber, Matthew
Kennedy-Asser, Alan T.
Kunzmann, Lutz
Ladant, Jean-Baptiste
Lear, Caroline H.
Moraweck, Karolin
Pearson, Paul N.
Piga, Emanuela
Pound, Matthew J.
Salzmann, Ulrich
Scher, Howie D.
Sijp, Willem P.
Śliwińska, Kasia K.
Wilson, Paul A.
Zhang, Zhongshi
author_sort Hutchinson, David K.
title The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons
title_short The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons
title_full The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons
title_fullStr The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons
title_full_unstemmed The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons
title_sort eocene-oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons
publisher Naturhistoriska riksmuseet, Enheten för paleobiologi
publishDate 2021
url http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4339
https://doi.org/10.5194/cp-2020-68
genre Antarc*
Antarctica
Ice Sheet
genre_facet Antarc*
Antarctica
Ice Sheet
op_relation Climate of the Past, 1814-9324, 2021, 17:1, s. 269-315
orcid:0000-0001-9385-4782
orcid:0000-0002-2843-2898
orcid:0000-0003-3585-6928
orcid:0000-0002-7893-1142
orcid:0000-0002-5557-3282
orcid:0000-0002-2771-9977
orcid:0000-0001-5143-8932
orcid:0000-0001-6445-3920
orcid:0000-0001-6214-0242
orcid:0000-0002-7533-4430
orcid:0000-0003-4628-9818
orcid:0000-0002-1069-5518
orcid:0000-0001-8029-9548
orcid:0000-0001-5598-5327
orcid:0000-0001-5488-8832
orcid:0000-0002-2354-1622
http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4339
doi:10.5194/cp-2020-68
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/cp-2020-68
_version_ 1766277194083991552
spelling ftnrm:oai:DiVA.org:nrm-4339 2023-05-15T14:05:22+02:00 The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons Hutchinson, David K. Coxall, Helen K. Lunt, Daniel J. Steinthorsdottir, Margret de Boer, Agatha M. Baatsen, Michiel von der Heydt, Anna Huber, Matthew Kennedy-Asser, Alan T. Kunzmann, Lutz Ladant, Jean-Baptiste Lear, Caroline H. Moraweck, Karolin Pearson, Paul N. Piga, Emanuela Pound, Matthew J. Salzmann, Ulrich Scher, Howie D. Sijp, Willem P. Śliwińska, Kasia K. Wilson, Paul A. Zhang, Zhongshi 2021 application/pdf http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4339 https://doi.org/10.5194/cp-2020-68 eng eng Naturhistoriska riksmuseet, Enheten för paleobiologi Department of Geological Sciences and Bolin Centre for Climate Research, Stockholm University School of Geographical Sciences, University of Bristol Bolin Centre for Climate Research, Stockholm University Institute for Marine and Atmospheric Research, Department of Physics, Utrecht University Department of Earth, Atmospheric, and Planetary Sciences, Purdue University Senckenberg Natural History Collections Dresden Department of Earth and Environmental Sciences, University of Michigan School of Earth and Ocean Sciences, Cardiff University Department of Geography and Environmental Sciences, Northumbria University School of the Earth, Ocean and Environment, University of South Carolina Climate Change Research Centre, University of New South Wales Department of Stratigraphy, Geological Survey of Denmark and Greenland University of Southampton, National Oceanography Centre Southampton Department of Atmospheric Science, China University of Geoscience, Wuhan Climate of the Past, 1814-9324, 2021, 17:1, s. 269-315 orcid:0000-0001-9385-4782 orcid:0000-0002-2843-2898 orcid:0000-0003-3585-6928 orcid:0000-0002-7893-1142 orcid:0000-0002-5557-3282 orcid:0000-0002-2771-9977 orcid:0000-0001-5143-8932 orcid:0000-0001-6445-3920 orcid:0000-0001-6214-0242 orcid:0000-0002-7533-4430 orcid:0000-0003-4628-9818 orcid:0000-0002-1069-5518 orcid:0000-0001-8029-9548 orcid:0000-0001-5598-5327 orcid:0000-0001-5488-8832 orcid:0000-0002-2354-1622 http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4339 doi:10.5194/cp-2020-68 info:eu-repo/semantics/openAccess Eocene-Oligocene transition palaeoclimate proxies modelling review Climate Research Klimatforskning Meteorology and Atmospheric Sciences Meteorologi och atmosfärforskning Geosciences Multidisciplinary Multidisciplinär geovetenskap Other Earth and Related Environmental Sciences Annan geovetenskap och miljövetenskap Article in journal info:eu-repo/semantics/article text 2021 ftnrm https://doi.org/10.5194/cp-2020-68 2022-01-13T17:17:03Z The Eocene–Oligocene transition (EOT) was a climate shift from a largely ice-free greenhouse world to an icehouse climate, involving the first major glaciation of Antarctica and global cooling occurring ∼ 34 million years ago (Ma) and lasting ∼ 790 kyr. The change is marked by a global shift in deep-sea δ18O representing a combination of deep-ocean cooling and growth in land ice volume. At the same time, multiple independent proxies for ocean tempera- ture indicate sea surface cooling, and major changes in global fauna and flora record a shift toward more cold-climate- adapted species. The two principal suggested explanations of this transition are a decline in atmospheric CO2 and changes to ocean gateways, while orbital forcing likely influenced the precise timing of the glaciation. Here we review and synthesise proxy evidence of palaeogeography, temperature, ice sheets, ocean circulation and CO2 change from the marine and terrestrial realms. Furthermore, we quantitatively com- pare proxy records of change to an ensemble of climate model simulations of temperature change across the EOT. The simulations compare three forcing mechanisms across the EOT: CO2 decrease, palaeogeographic changes and ice sheet growth. Our model ensemble results demonstrate the need for a global cooling mechanism beyond the imposition of an ice sheet or palaeogeographic changes. We find that CO2 forcing involving a large decrease in CO2 of ca. 40 % (∼ 325 ppm drop) provides the best fit to the available proxy evidence, with ice sheet and palaeogeographic changes play- ing a secondary role. While this large decrease is consistent with some CO2 proxy records (the extreme endmember of decrease), the positive feedback mechanisms on ice growth are so strong that a modest CO2 decrease beyond a critical threshold for ice sheet initiation is well capable of triggering rapid ice sheet growth. Thus, the amplitude of CO2 decrease signalled by our data–model comparison should be consid- ered an upper estimate and perhaps artificially large, not least because the current generation of climate models do not in- clude dynamic ice sheets and in some cases may be under- sensitive to CO2 forcing. The model ensemble also cannot exclude the possibility that palaeogeographic changes could have triggered a reduction in CO2. This research was alsosupported by the Bolin Centre for Climate Research (Research Area 6), and the Danish Council for Independent Research – Natural Sciences (DFF/FNU; grant no. 11-107497) Article in Journal/Newspaper Antarc* Antarctica Ice Sheet Swedish Museum of Natural History: Publications (DiVA)