Scaling of flexural and compressive ice failure

Physical model tests are a powerful means of obtaining solutions to a variety of engineering problems. The applications in hydraulics and aerospace engineering are prominent, where the use of similitude and dimensionless numbers is well developed. The first step is to understand the mechanics of the...

Full description

Bibliographic Details
Published in:Volume 6: Materials Technology; Polar and Arctic Sciences and Technology; Petroleum Technology Symposium
Main Authors: Jordaan, Ian, Taylor, Rocky, Derradji-Aouat, Ahmed
Format: Article in Journal/Newspaper
Language:English
Published: ASME 2012
Subjects:
Ice
Online Access:https://doi.org/10.1115/OMAE2012-84033
https://nrc-publications.canada.ca/eng/view/object/?id=b74483b5-d84a-473b-a1db-f6e798038b12
https://nrc-publications.canada.ca/fra/voir/objet/?id=b74483b5-d84a-473b-a1db-f6e798038b12
id ftnrccanada:oai:cisti-icist.nrc-cnrc.ca:cistinparc:21268603
record_format openpolar
spelling ftnrccanada:oai:cisti-icist.nrc-cnrc.ca:cistinparc:21268603 2023-05-15T14:22:10+02:00 Scaling of flexural and compressive ice failure Jordaan, Ian Taylor, Rocky Derradji-Aouat, Ahmed 2012-06-15 text https://doi.org/10.1115/OMAE2012-84033 https://nrc-publications.canada.ca/eng/view/object/?id=b74483b5-d84a-473b-a1db-f6e798038b12 https://nrc-publications.canada.ca/fra/voir/objet/?id=b74483b5-d84a-473b-a1db-f6e798038b12 eng eng ASME Volume 6 : Materials Technology; Polar and Arctic Sciences and Technology; Petroleum Technology Symposium, 31st International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2012), June 10-15, 2012, Rio de Janeiro, Brazil, ISBN: 9780791844939, Publication date: 2012-06-15, Pages: 589–595 doi:10.1115/OMAE2012-84033 Ice Failure article 2012 ftnrccanada https://doi.org/10.1115/OMAE2012-84033 2021-09-01T06:26:38Z Physical model tests are a powerful means of obtaining solutions to a variety of engineering problems. The applications in hydraulics and aerospace engineering are prominent, where the use of similitude and dimensionless numbers is well developed. The first step is to understand the mechanics of the process. In the case of ice, the theory has not been developed to the same degree as in fluid mechanics. The use of scale models in test basins has often focused on resistance to ship motion and on flexural failure of the ice. This has been reasonably well addressed. The properties of the model ice have often been modified to permit scaling of flexural strength as well as elastic modulus to achieve appropriate behaviour. Extension of testing to situations where ice fails in compression or combined flexure and crushing leads to additional complication. At low rates of loading, ice creeps and also demonstrates enhanced rates of creep if the stress is sufficient to cause damage (microstructural change) in the ice. At higher rates of loading, fracture processes result in a localization of loading, and in the formation of high-pressure zones, which have their own special failure process. In the paper a review of scaled ice testing is given, with associated mechanics including flexural failure. This is followed by a discussion of the failure processes in compression and related mechanics such as creep, damage and fracture. Suggestions as to scaling of these processes are made. An important aspect that is considered is the randomness of ice loads as measured in the full scale. Modelling this aspect and determination of appropriate extreme values is discussed. The Weibull modulus is suggested as an appropriate parameter. date on PDF supplied by author for conference does not precisely agree with website metadata. Went with PDF Peer reviewed: Yes NRC publication: Yes Article in Journal/Newspaper Arctic National Research Council Canada: NRC Publications Archive Volume 6: Materials Technology; Polar and Arctic Sciences and Technology; Petroleum Technology Symposium 589 595
institution Open Polar
collection National Research Council Canada: NRC Publications Archive
op_collection_id ftnrccanada
language English
topic Ice
Failure
spellingShingle Ice
Failure
Jordaan, Ian
Taylor, Rocky
Derradji-Aouat, Ahmed
Scaling of flexural and compressive ice failure
topic_facet Ice
Failure
description Physical model tests are a powerful means of obtaining solutions to a variety of engineering problems. The applications in hydraulics and aerospace engineering are prominent, where the use of similitude and dimensionless numbers is well developed. The first step is to understand the mechanics of the process. In the case of ice, the theory has not been developed to the same degree as in fluid mechanics. The use of scale models in test basins has often focused on resistance to ship motion and on flexural failure of the ice. This has been reasonably well addressed. The properties of the model ice have often been modified to permit scaling of flexural strength as well as elastic modulus to achieve appropriate behaviour. Extension of testing to situations where ice fails in compression or combined flexure and crushing leads to additional complication. At low rates of loading, ice creeps and also demonstrates enhanced rates of creep if the stress is sufficient to cause damage (microstructural change) in the ice. At higher rates of loading, fracture processes result in a localization of loading, and in the formation of high-pressure zones, which have their own special failure process. In the paper a review of scaled ice testing is given, with associated mechanics including flexural failure. This is followed by a discussion of the failure processes in compression and related mechanics such as creep, damage and fracture. Suggestions as to scaling of these processes are made. An important aspect that is considered is the randomness of ice loads as measured in the full scale. Modelling this aspect and determination of appropriate extreme values is discussed. The Weibull modulus is suggested as an appropriate parameter. date on PDF supplied by author for conference does not precisely agree with website metadata. Went with PDF Peer reviewed: Yes NRC publication: Yes
format Article in Journal/Newspaper
author Jordaan, Ian
Taylor, Rocky
Derradji-Aouat, Ahmed
author_facet Jordaan, Ian
Taylor, Rocky
Derradji-Aouat, Ahmed
author_sort Jordaan, Ian
title Scaling of flexural and compressive ice failure
title_short Scaling of flexural and compressive ice failure
title_full Scaling of flexural and compressive ice failure
title_fullStr Scaling of flexural and compressive ice failure
title_full_unstemmed Scaling of flexural and compressive ice failure
title_sort scaling of flexural and compressive ice failure
publisher ASME
publishDate 2012
url https://doi.org/10.1115/OMAE2012-84033
https://nrc-publications.canada.ca/eng/view/object/?id=b74483b5-d84a-473b-a1db-f6e798038b12
https://nrc-publications.canada.ca/fra/voir/objet/?id=b74483b5-d84a-473b-a1db-f6e798038b12
genre Arctic
genre_facet Arctic
op_relation Volume 6 : Materials Technology; Polar and Arctic Sciences and Technology; Petroleum Technology Symposium, 31st International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2012), June 10-15, 2012, Rio de Janeiro, Brazil, ISBN: 9780791844939, Publication date: 2012-06-15, Pages: 589–595
doi:10.1115/OMAE2012-84033
op_doi https://doi.org/10.1115/OMAE2012-84033
container_title Volume 6: Materials Technology; Polar and Arctic Sciences and Technology; Petroleum Technology Symposium
container_start_page 589
op_container_end_page 595
_version_ 1766294819218391040