Driving sustainable energy storage: A multi-scale investigation of methane hydrate formation with green promoters and innovative reactor design

International audience Synthetic Gas hydrates are promising materials for safe and compact energy storage but their wide-scale application is hindered by slow formation kinetics. We investigated the effect of green kinetic promoters of H-SSZ-13 zeolite, L-tryptophan, L-leucine, and L-methionine in a...

Full description

Bibliographic Details
Published in:Journal of Energy Storage
Main Authors: Omran, Ahmed, Nesterenko, Nikolay, Valtchev, Valentin
Other Authors: École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU), Laboratoire catalyse et spectrochimie (LCS), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Gas Solutions GTB
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04295531
https://hal.science/hal-04295531/document
https://hal.science/hal-04295531/file/296.pdf
https://doi.org/10.1016/j.est.2023.109653
Description
Summary:International audience Synthetic Gas hydrates are promising materials for safe and compact energy storage but their wide-scale application is hindered by slow formation kinetics. We investigated the effect of green kinetic promoters of H-SSZ-13 zeolite, L-tryptophan, L-leucine, and L-methionine in a novel reactor design to accelerate hydrate formation at 6 MPa. In (NSR), H-SSZ-13 and L-tryptophan showed superior performance over L-leucine and L-methionine. While H-SSZ-13 showed the lowest average (t) of 286 mins and the highest volumetric capacity of 115 V/V at 283 K, its kinetic performance, along with other promoters, dropped significantly at 293 K. We introduced a new (FBR) equipped with light (MFP) to increase gas diffusion and thermal conductivity. The combined effect of (FBR)-(MFP) reactor with zeolite significantly improved the kinetics overcoming (NSR) drawbacks. At 293.15 K, H-SSZ-13 zeolite promoter showed superior performance reducing the induction time and (t) to 3 and 154 mins, respectively. Furthermore, it exploited 88.6%, and 96% of the sII clathrates volumetric storage capacity at 293 K and 283 K, respectively. Finally, we showed that the synthesized hydrates can be stored at atmospheric pressure for 4 months without significant methane loss. This multi-scale approach is paving the way for scaling up green and economical gas hydrate technology.