Moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in Arctic Canada through the Common Era

Most extant ice caps mantling low-relief Arctic Canada landscapes remained cold based throughout the late Holocene, preserving in situ bryophytes killed as ice expanded across vegetated landscapes. After reaching peak late Holocene dimensions ∼1900 CE, ice caps receded as Arctic summers warmed, expo...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: Miller, Gifford H., Pendleton, Simon L., Jahn, Alexandra, Zhong, Yafang, Andrews, John T., Lehman, Scott J., Briner, Jason P., Raberg, Jonathan H., Bueltmann, Helga, Raynolds, Martha, Geirsdóttir, Áslaug, Southon, John R.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2023
Subjects:
Online Access:https://doi.org/10.5194/cp-19-2341-2023
https://noa.gwlb.de/receive/cop_mods_00069887
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00068255/cp-19-2341-2023.pdf
https://cp.copernicus.org/articles/19/2341/2023/cp-19-2341-2023.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00069887
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00069887 2023-12-17T10:25:11+01:00 Moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in Arctic Canada through the Common Era Miller, Gifford H. Pendleton, Simon L. Jahn, Alexandra Zhong, Yafang Andrews, John T. Lehman, Scott J. Briner, Jason P. Raberg, Jonathan H. Bueltmann, Helga Raynolds, Martha Geirsdóttir, Áslaug Southon, John R. 2023-11 electronic https://doi.org/10.5194/cp-19-2341-2023 https://noa.gwlb.de/receive/cop_mods_00069887 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00068255/cp-19-2341-2023.pdf https://cp.copernicus.org/articles/19/2341/2023/cp-19-2341-2023.pdf eng eng Copernicus Publications Climate of the Past -- http://www.copernicus.org/EGU/cp/cp/published_papers.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2217985 -- 1814-9332 https://doi.org/10.5194/cp-19-2341-2023 https://noa.gwlb.de/receive/cop_mods_00069887 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00068255/cp-19-2341-2023.pdf https://cp.copernicus.org/articles/19/2341/2023/cp-19-2341-2023.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2023 ftnonlinearchiv https://doi.org/10.5194/cp-19-2341-2023 2023-11-20T00:22:45Z Most extant ice caps mantling low-relief Arctic Canada landscapes remained cold based throughout the late Holocene, preserving in situ bryophytes killed as ice expanded across vegetated landscapes. After reaching peak late Holocene dimensions ∼1900 CE, ice caps receded as Arctic summers warmed, exposing entombed vegetation. The calibrated radiocarbon ages of entombed moss collected near ice cap margins (kill dates) define when ice advanced across the site, killing the moss, and remained over the site until the year of their collection. In an earlier study, we reported 94 last millennium radiocarbon dates on in situ dead moss collected at ice cap margins across Baffin Island, Arctic Canada. Tight clustering of those ages indicated an abrupt onset of the Little Ice Age at ∼1240 CE and further expansion at ∼1480 CE coincident with episodes of major explosive volcanism. Here we test the confidence in kill dates as reliable predictors of expanding ice caps by resampling two previously densely sampled ice complexes ∼15 years later after ∼250 m of ice recession. The probability density functions (PDFs) of the more recent series of ages match PDFs of the earlier series but with a larger fraction of early Common Era ages. Post 2005 CE ice recession has exposed relict ice caps that grew during earlier Common Era advances and were preserved beneath later ice cap growth. We compare the 106 kill dates from the two ice complexes with 80 kill dates from 62 other ice caps within 250 km of the two densely sampled ice complexes. The PDFs of kill dates from the 62 other ice caps cluster in the same time windows as those from the two ice complexes alone, with the PDF of all 186 kill dates documenting episodes of widespread ice expansion restricted almost exclusively to 250–450 CE, 850–1000 CE, and a dense early Little Ice Age cluster with peaks at ∼1240 and ∼1480 CE. Ice continued to expand after 1480 CE, reaching maximum dimensions at ∼1880 CE that are still visible as zones of sparse vegetation cover in remotely sensed imagery. ... Article in Journal/Newspaper Arctic Baffin Island Baffin Ice cap Niedersächsisches Online-Archiv NOA Arctic Baffin Island Canada Climate of the Past 19 11 2341 2360
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Miller, Gifford H.
Pendleton, Simon L.
Jahn, Alexandra
Zhong, Yafang
Andrews, John T.
Lehman, Scott J.
Briner, Jason P.
Raberg, Jonathan H.
Bueltmann, Helga
Raynolds, Martha
Geirsdóttir, Áslaug
Southon, John R.
Moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in Arctic Canada through the Common Era
topic_facet article
Verlagsveröffentlichung
description Most extant ice caps mantling low-relief Arctic Canada landscapes remained cold based throughout the late Holocene, preserving in situ bryophytes killed as ice expanded across vegetated landscapes. After reaching peak late Holocene dimensions ∼1900 CE, ice caps receded as Arctic summers warmed, exposing entombed vegetation. The calibrated radiocarbon ages of entombed moss collected near ice cap margins (kill dates) define when ice advanced across the site, killing the moss, and remained over the site until the year of their collection. In an earlier study, we reported 94 last millennium radiocarbon dates on in situ dead moss collected at ice cap margins across Baffin Island, Arctic Canada. Tight clustering of those ages indicated an abrupt onset of the Little Ice Age at ∼1240 CE and further expansion at ∼1480 CE coincident with episodes of major explosive volcanism. Here we test the confidence in kill dates as reliable predictors of expanding ice caps by resampling two previously densely sampled ice complexes ∼15 years later after ∼250 m of ice recession. The probability density functions (PDFs) of the more recent series of ages match PDFs of the earlier series but with a larger fraction of early Common Era ages. Post 2005 CE ice recession has exposed relict ice caps that grew during earlier Common Era advances and were preserved beneath later ice cap growth. We compare the 106 kill dates from the two ice complexes with 80 kill dates from 62 other ice caps within 250 km of the two densely sampled ice complexes. The PDFs of kill dates from the 62 other ice caps cluster in the same time windows as those from the two ice complexes alone, with the PDF of all 186 kill dates documenting episodes of widespread ice expansion restricted almost exclusively to 250–450 CE, 850–1000 CE, and a dense early Little Ice Age cluster with peaks at ∼1240 and ∼1480 CE. Ice continued to expand after 1480 CE, reaching maximum dimensions at ∼1880 CE that are still visible as zones of sparse vegetation cover in remotely sensed imagery. ...
format Article in Journal/Newspaper
author Miller, Gifford H.
Pendleton, Simon L.
Jahn, Alexandra
Zhong, Yafang
Andrews, John T.
Lehman, Scott J.
Briner, Jason P.
Raberg, Jonathan H.
Bueltmann, Helga
Raynolds, Martha
Geirsdóttir, Áslaug
Southon, John R.
author_facet Miller, Gifford H.
Pendleton, Simon L.
Jahn, Alexandra
Zhong, Yafang
Andrews, John T.
Lehman, Scott J.
Briner, Jason P.
Raberg, Jonathan H.
Bueltmann, Helga
Raynolds, Martha
Geirsdóttir, Áslaug
Southon, John R.
author_sort Miller, Gifford H.
title Moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in Arctic Canada through the Common Era
title_short Moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in Arctic Canada through the Common Era
title_full Moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in Arctic Canada through the Common Era
title_fullStr Moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in Arctic Canada through the Common Era
title_full_unstemmed Moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in Arctic Canada through the Common Era
title_sort moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in arctic canada through the common era
publisher Copernicus Publications
publishDate 2023
url https://doi.org/10.5194/cp-19-2341-2023
https://noa.gwlb.de/receive/cop_mods_00069887
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00068255/cp-19-2341-2023.pdf
https://cp.copernicus.org/articles/19/2341/2023/cp-19-2341-2023.pdf
geographic Arctic
Baffin Island
Canada
geographic_facet Arctic
Baffin Island
Canada
genre Arctic
Baffin Island
Baffin
Ice cap
genre_facet Arctic
Baffin Island
Baffin
Ice cap
op_relation Climate of the Past -- http://www.copernicus.org/EGU/cp/cp/published_papers.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2217985 -- 1814-9332
https://doi.org/10.5194/cp-19-2341-2023
https://noa.gwlb.de/receive/cop_mods_00069887
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00068255/cp-19-2341-2023.pdf
https://cp.copernicus.org/articles/19/2341/2023/cp-19-2341-2023.pdf
op_rights https://creativecommons.org/licenses/by/4.0/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/cp-19-2341-2023
container_title Climate of the Past
container_volume 19
container_issue 11
container_start_page 2341
op_container_end_page 2360
_version_ 1785574083565453312