Projection of snowfall extremes in the French Alps as a function of elevation and global warming level
Following the projected increase in extreme precipitation, an increase in extreme snowfall may be expected in cold regions, e.g., for high latitudes or at high elevations. By contrast, in low- to medium-elevation areas, the probability of experiencing rainfall instead of snowfall is generally projec...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2023
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-17-4691-2023 https://noa.gwlb.de/receive/cop_mods_00069764 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00068135/tc-17-4691-2023.pdf https://tc.copernicus.org/articles/17/4691/2023/tc-17-4691-2023.pdf |
id |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00069764 |
---|---|
record_format |
openpolar |
spelling |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00069764 2023-12-10T09:54:18+01:00 Projection of snowfall extremes in the French Alps as a function of elevation and global warming level Le Roux, Erwan Evin, Guillaume Samacoïts, Raphaëlle Eckert, Nicolas Blanchet, Juliette Morin, Samuel 2023-11 electronic https://doi.org/10.5194/tc-17-4691-2023 https://noa.gwlb.de/receive/cop_mods_00069764 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00068135/tc-17-4691-2023.pdf https://tc.copernicus.org/articles/17/4691/2023/tc-17-4691-2023.pdf eng eng Copernicus Publications The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-17-4691-2023 https://noa.gwlb.de/receive/cop_mods_00069764 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00068135/tc-17-4691-2023.pdf https://tc.copernicus.org/articles/17/4691/2023/tc-17-4691-2023.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2023 ftnonlinearchiv https://doi.org/10.5194/tc-17-4691-2023 2023-11-13T00:22:47Z Following the projected increase in extreme precipitation, an increase in extreme snowfall may be expected in cold regions, e.g., for high latitudes or at high elevations. By contrast, in low- to medium-elevation areas, the probability of experiencing rainfall instead of snowfall is generally projected to increase due to warming conditions. Yet, in mountainous areas, despite the likely existence of these contrasted trends according to elevation, changes in extreme snowfall with warming remain poorly quantified. This paper assesses projected changes in heavy and extreme snowfall, i.e., in mean annual maxima and 100-year return levels, in the French Alps as a function of elevation and global warming level. We apply a recent methodology, based on the analysis of annual maxima with non-stationary extreme value models, to an ensemble of 20 adjusted general circulation model–regional climate model (GCM–RCM) pairs from the EURO-CORDEX experiment under the Representative Concentration Pathway 8.5 (RCP8.5) scenario. For each of the 23 massifs of the French Alps, maxima in the hydrological sense (1 August to 31 July) are provided from 1951 to 2100 and every 300 m of elevations between 900 and 3600 m. Results rely on relative or absolute changes computed with respect to current climate conditions (corresponding here to +1 ∘C global warming level) at the massif scale and averaged over all massifs. Overall, daily mean annual maxima of snowfall are projected to decrease below 3000 m and increase above 3600 m, while 100-year return levels are projected to decrease below 2400 m and increase above 3300 m. At elevations in between, values are on average projected to increase until +3 ∘C of global warming and then decrease. At +4 ∘C, average relative changes in mean annual maxima and 100-year return levels, respectively, vary from −26 % and −15 % at 900 m to +3 % and +8 % at 3600 m. Finally, for each global warming level between +1.5 and +4 ∘C, we compute the elevation threshold that separates contrasted trends, i.e., where the ... Article in Journal/Newspaper The Cryosphere Niedersächsisches Online-Archiv NOA The Cryosphere 17 11 4691 4704 |
institution |
Open Polar |
collection |
Niedersächsisches Online-Archiv NOA |
op_collection_id |
ftnonlinearchiv |
language |
English |
topic |
article Verlagsveröffentlichung |
spellingShingle |
article Verlagsveröffentlichung Le Roux, Erwan Evin, Guillaume Samacoïts, Raphaëlle Eckert, Nicolas Blanchet, Juliette Morin, Samuel Projection of snowfall extremes in the French Alps as a function of elevation and global warming level |
topic_facet |
article Verlagsveröffentlichung |
description |
Following the projected increase in extreme precipitation, an increase in extreme snowfall may be expected in cold regions, e.g., for high latitudes or at high elevations. By contrast, in low- to medium-elevation areas, the probability of experiencing rainfall instead of snowfall is generally projected to increase due to warming conditions. Yet, in mountainous areas, despite the likely existence of these contrasted trends according to elevation, changes in extreme snowfall with warming remain poorly quantified. This paper assesses projected changes in heavy and extreme snowfall, i.e., in mean annual maxima and 100-year return levels, in the French Alps as a function of elevation and global warming level. We apply a recent methodology, based on the analysis of annual maxima with non-stationary extreme value models, to an ensemble of 20 adjusted general circulation model–regional climate model (GCM–RCM) pairs from the EURO-CORDEX experiment under the Representative Concentration Pathway 8.5 (RCP8.5) scenario. For each of the 23 massifs of the French Alps, maxima in the hydrological sense (1 August to 31 July) are provided from 1951 to 2100 and every 300 m of elevations between 900 and 3600 m. Results rely on relative or absolute changes computed with respect to current climate conditions (corresponding here to +1 ∘C global warming level) at the massif scale and averaged over all massifs. Overall, daily mean annual maxima of snowfall are projected to decrease below 3000 m and increase above 3600 m, while 100-year return levels are projected to decrease below 2400 m and increase above 3300 m. At elevations in between, values are on average projected to increase until +3 ∘C of global warming and then decrease. At +4 ∘C, average relative changes in mean annual maxima and 100-year return levels, respectively, vary from −26 % and −15 % at 900 m to +3 % and +8 % at 3600 m. Finally, for each global warming level between +1.5 and +4 ∘C, we compute the elevation threshold that separates contrasted trends, i.e., where the ... |
format |
Article in Journal/Newspaper |
author |
Le Roux, Erwan Evin, Guillaume Samacoïts, Raphaëlle Eckert, Nicolas Blanchet, Juliette Morin, Samuel |
author_facet |
Le Roux, Erwan Evin, Guillaume Samacoïts, Raphaëlle Eckert, Nicolas Blanchet, Juliette Morin, Samuel |
author_sort |
Le Roux, Erwan |
title |
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level |
title_short |
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level |
title_full |
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level |
title_fullStr |
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level |
title_full_unstemmed |
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level |
title_sort |
projection of snowfall extremes in the french alps as a function of elevation and global warming level |
publisher |
Copernicus Publications |
publishDate |
2023 |
url |
https://doi.org/10.5194/tc-17-4691-2023 https://noa.gwlb.de/receive/cop_mods_00069764 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00068135/tc-17-4691-2023.pdf https://tc.copernicus.org/articles/17/4691/2023/tc-17-4691-2023.pdf |
genre |
The Cryosphere |
genre_facet |
The Cryosphere |
op_relation |
The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-17-4691-2023 https://noa.gwlb.de/receive/cop_mods_00069764 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00068135/tc-17-4691-2023.pdf https://tc.copernicus.org/articles/17/4691/2023/tc-17-4691-2023.pdf |
op_rights |
https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.5194/tc-17-4691-2023 |
container_title |
The Cryosphere |
container_volume |
17 |
container_issue |
11 |
container_start_page |
4691 |
op_container_end_page |
4704 |
_version_ |
1784901663663849472 |