Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons

Cosmic rays entering the Earth's atmosphere produce showers of secondary particles such as protons, neutrons, and muons. The interaction of these particles with oxygen-16 (16O) in minerals such as ice and quartz can produce carbon-14 (14C). In glacial ice, 14C is also incorporated through trapp...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Dyonisius, Michael N., Petrenko, Vasilii V., Smith, Andrew M., Hmiel, Benjamin, Neff, Peter D., Yang, Bin, Hua, Quan, Schmitt, Jochen, Shackleton, Sarah A., Buizert, Christo, Place, Philip F., Menking, James A., Beaudette, Ross, Harth, Christina, Kalk, Michael, Roop, Heidi A., Bereiter, Bernhard, Armanetti, Casey, Vimont, Isaac, Englund Michel, Sylvia, Brook, Edward J., Severinghaus, Jeffrey P., Weiss, Ray F., McConnell, Joseph R.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2023
Subjects:
Online Access:https://doi.org/10.5194/tc-17-843-2023
https://noa.gwlb.de/receive/cop_mods_00065093
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00063714/tc-17-843-2023.pdf
https://tc.copernicus.org/articles/17/843/2023/tc-17-843-2023.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00065093
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00065093 2023-05-15T13:49:22+02:00 Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons Dyonisius, Michael N. Petrenko, Vasilii V. Smith, Andrew M. Hmiel, Benjamin Neff, Peter D. Yang, Bin Hua, Quan Schmitt, Jochen Shackleton, Sarah A. Buizert, Christo Place, Philip F. Menking, James A. Beaudette, Ross Harth, Christina Kalk, Michael Roop, Heidi A. Bereiter, Bernhard Armanetti, Casey Vimont, Isaac Englund Michel, Sylvia Brook, Edward J. Severinghaus, Jeffrey P. Weiss, Ray F. McConnell, Joseph R. 2023-02 electronic https://doi.org/10.5194/tc-17-843-2023 https://noa.gwlb.de/receive/cop_mods_00065093 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00063714/tc-17-843-2023.pdf https://tc.copernicus.org/articles/17/843/2023/tc-17-843-2023.pdf eng eng Copernicus Publications The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-17-843-2023 https://noa.gwlb.de/receive/cop_mods_00065093 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00063714/tc-17-843-2023.pdf https://tc.copernicus.org/articles/17/843/2023/tc-17-843-2023.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess CC-BY article Verlagsveröffentlichung article Text doc-type:article 2023 ftnonlinearchiv https://doi.org/10.5194/tc-17-843-2023 2023-02-27T00:14:44Z Cosmic rays entering the Earth's atmosphere produce showers of secondary particles such as protons, neutrons, and muons. The interaction of these particles with oxygen-16 (16O) in minerals such as ice and quartz can produce carbon-14 (14C). In glacial ice, 14C is also incorporated through trapping of 14C-containing atmospheric gases (14CO2, 14CO, and 14CH4). Understanding the production rates of in situ cosmogenic 14C is important to deconvolve the in situ cosmogenic and atmospheric 14C signals in ice, both of which contain valuable paleoenvironmental information. Unfortunately, the in situ 14C production rates by muons (which are the dominant production mechanism at depths of >6 m solid ice equivalent) are uncertain. In this study, we use measurements of in situ 14C in ancient ice (>50 ka) from the Taylor Glacier, an ablation site in Antarctica, in combination with a 2D ice flow model to better constrain the compound-specific rates of 14C production by muons and the partitioning of in situ 14C between CO2, CO, and CH4. Our measurements show that 33.7 % (±11.4 %; 95 % confidence interval) of the produced cosmogenic 14C forms 14CO and 66.1 % (±11.5 %; 95 % confidence interval) of the produced cosmogenic 14C forms 14CO2. 14CH4 represents a very small fraction (<0.3 %) of the total. Assuming that the majority of in situ muogenic 14C in ice forms 14CO2, 14CO, and 14CH4, we also calculated muogenic 14C production rates that are lower by factors of 5.7 (3.6–13.9; 95 % confidence interval) and 3.7 (2.0–11.9; 95 % confidence interval) for negative muon capture and fast muon interactions, respectively, when compared to values determined in quartz from laboratory studies (Heisinger et al., 2002a, b) and in a natural setting (Lupker et al., 2015). This apparent discrepancy in muogenic 14C production rates in ice and quartz currently lacks a good explanation and requires further investigation. Article in Journal/Newspaper Antarc* Antarctica ice core Taylor Glacier The Cryosphere Niedersächsisches Online-Archiv NOA Taylor Glacier ENVELOPE(162.167,162.167,-77.733,-77.733) The Cryosphere 17 2 843 863
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Dyonisius, Michael N.
Petrenko, Vasilii V.
Smith, Andrew M.
Hmiel, Benjamin
Neff, Peter D.
Yang, Bin
Hua, Quan
Schmitt, Jochen
Shackleton, Sarah A.
Buizert, Christo
Place, Philip F.
Menking, James A.
Beaudette, Ross
Harth, Christina
Kalk, Michael
Roop, Heidi A.
Bereiter, Bernhard
Armanetti, Casey
Vimont, Isaac
Englund Michel, Sylvia
Brook, Edward J.
Severinghaus, Jeffrey P.
Weiss, Ray F.
McConnell, Joseph R.
Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons
topic_facet article
Verlagsveröffentlichung
description Cosmic rays entering the Earth's atmosphere produce showers of secondary particles such as protons, neutrons, and muons. The interaction of these particles with oxygen-16 (16O) in minerals such as ice and quartz can produce carbon-14 (14C). In glacial ice, 14C is also incorporated through trapping of 14C-containing atmospheric gases (14CO2, 14CO, and 14CH4). Understanding the production rates of in situ cosmogenic 14C is important to deconvolve the in situ cosmogenic and atmospheric 14C signals in ice, both of which contain valuable paleoenvironmental information. Unfortunately, the in situ 14C production rates by muons (which are the dominant production mechanism at depths of >6 m solid ice equivalent) are uncertain. In this study, we use measurements of in situ 14C in ancient ice (>50 ka) from the Taylor Glacier, an ablation site in Antarctica, in combination with a 2D ice flow model to better constrain the compound-specific rates of 14C production by muons and the partitioning of in situ 14C between CO2, CO, and CH4. Our measurements show that 33.7 % (±11.4 %; 95 % confidence interval) of the produced cosmogenic 14C forms 14CO and 66.1 % (±11.5 %; 95 % confidence interval) of the produced cosmogenic 14C forms 14CO2. 14CH4 represents a very small fraction (<0.3 %) of the total. Assuming that the majority of in situ muogenic 14C in ice forms 14CO2, 14CO, and 14CH4, we also calculated muogenic 14C production rates that are lower by factors of 5.7 (3.6–13.9; 95 % confidence interval) and 3.7 (2.0–11.9; 95 % confidence interval) for negative muon capture and fast muon interactions, respectively, when compared to values determined in quartz from laboratory studies (Heisinger et al., 2002a, b) and in a natural setting (Lupker et al., 2015). This apparent discrepancy in muogenic 14C production rates in ice and quartz currently lacks a good explanation and requires further investigation.
format Article in Journal/Newspaper
author Dyonisius, Michael N.
Petrenko, Vasilii V.
Smith, Andrew M.
Hmiel, Benjamin
Neff, Peter D.
Yang, Bin
Hua, Quan
Schmitt, Jochen
Shackleton, Sarah A.
Buizert, Christo
Place, Philip F.
Menking, James A.
Beaudette, Ross
Harth, Christina
Kalk, Michael
Roop, Heidi A.
Bereiter, Bernhard
Armanetti, Casey
Vimont, Isaac
Englund Michel, Sylvia
Brook, Edward J.
Severinghaus, Jeffrey P.
Weiss, Ray F.
McConnell, Joseph R.
author_facet Dyonisius, Michael N.
Petrenko, Vasilii V.
Smith, Andrew M.
Hmiel, Benjamin
Neff, Peter D.
Yang, Bin
Hua, Quan
Schmitt, Jochen
Shackleton, Sarah A.
Buizert, Christo
Place, Philip F.
Menking, James A.
Beaudette, Ross
Harth, Christina
Kalk, Michael
Roop, Heidi A.
Bereiter, Bernhard
Armanetti, Casey
Vimont, Isaac
Englund Michel, Sylvia
Brook, Edward J.
Severinghaus, Jeffrey P.
Weiss, Ray F.
McConnell, Joseph R.
author_sort Dyonisius, Michael N.
title Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons
title_short Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons
title_full Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons
title_fullStr Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons
title_full_unstemmed Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons
title_sort using ice core measurements from taylor glacier, antarctica, to calibrate in situ cosmogenic 14c production rates by muons
publisher Copernicus Publications
publishDate 2023
url https://doi.org/10.5194/tc-17-843-2023
https://noa.gwlb.de/receive/cop_mods_00065093
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00063714/tc-17-843-2023.pdf
https://tc.copernicus.org/articles/17/843/2023/tc-17-843-2023.pdf
long_lat ENVELOPE(162.167,162.167,-77.733,-77.733)
geographic Taylor Glacier
geographic_facet Taylor Glacier
genre Antarc*
Antarctica
ice core
Taylor Glacier
The Cryosphere
genre_facet Antarc*
Antarctica
ice core
Taylor Glacier
The Cryosphere
op_relation The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424
https://doi.org/10.5194/tc-17-843-2023
https://noa.gwlb.de/receive/cop_mods_00065093
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00063714/tc-17-843-2023.pdf
https://tc.copernicus.org/articles/17/843/2023/tc-17-843-2023.pdf
op_rights https://creativecommons.org/licenses/by/4.0/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/tc-17-843-2023
container_title The Cryosphere
container_volume 17
container_issue 2
container_start_page 843
op_container_end_page 863
_version_ 1766251261097672704