Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments

Clouds are an important component of the climate system, yet our understanding of how they directly and indirectly affect glacier melt in different climates is incomplete. Here we analyse high-quality datasets from 16 mountain glaciers in diverse climates around the globe to better understand how re...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Conway, Jonathan P., Abermann, Jakob, Andreassen, Liss M., Azam, Mohd Farooq, Cullen, Nicolas J., Fitzpatrick, Noel, Giesen, Rianne H., Langley, Kirsty, MacDonell, Shelley, Mölg, Thomas, Radić, Valentina, Reijmer, Carleen H., Sicart, Jean-Emmanuel
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
Online Access:https://doi.org/10.5194/tc-16-3331-2022
https://noa.gwlb.de/receive/cop_mods_00062390
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00061669/tc-16-3331-2022.pdf
https://tc.copernicus.org/articles/16/3331/2022/tc-16-3331-2022.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00062390
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00062390 2023-05-15T18:32:33+02:00 Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments Conway, Jonathan P. Abermann, Jakob Andreassen, Liss M. Azam, Mohd Farooq Cullen, Nicolas J. Fitzpatrick, Noel Giesen, Rianne H. Langley, Kirsty MacDonell, Shelley Mölg, Thomas Radić, Valentina Reijmer, Carleen H. Sicart, Jean-Emmanuel 2022-08 electronic https://doi.org/10.5194/tc-16-3331-2022 https://noa.gwlb.de/receive/cop_mods_00062390 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00061669/tc-16-3331-2022.pdf https://tc.copernicus.org/articles/16/3331/2022/tc-16-3331-2022.pdf eng eng Copernicus Publications The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-16-3331-2022 https://noa.gwlb.de/receive/cop_mods_00062390 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00061669/tc-16-3331-2022.pdf https://tc.copernicus.org/articles/16/3331/2022/tc-16-3331-2022.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess CC-BY article Verlagsveröffentlichung article Text doc-type:article 2022 ftnonlinearchiv https://doi.org/10.5194/tc-16-3331-2022 2022-08-28T23:11:53Z Clouds are an important component of the climate system, yet our understanding of how they directly and indirectly affect glacier melt in different climates is incomplete. Here we analyse high-quality datasets from 16 mountain glaciers in diverse climates around the globe to better understand how relationships between clouds and near-surface meteorology, radiation and surface energy balance vary. The seasonal cycle of cloud frequency varies markedly between mountain glacier sites. During the main melt season at each site, an increase in cloud cover is associated with increased vapour pressure and relative humidity, but relationships to wind speed are site specific. At colder sites (average near-surface air temperature in the melt season <0 ∘C), air temperature generally increases with increasing cloudiness, while for warmer sites (average near-surface air temperature in the melt season ≫0 ∘C), air temperature decreases with increasing cloudiness. At all sites, surface melt is more frequent in cloudy compared to clear-sky conditions. The proportion of melt from temperature-dependent energy fluxes (incoming longwave radiation, turbulent sensible heat and latent heat) also universally increases in cloudy conditions. However, cloud cover does not affect daily total melt in a universal way, with some sites showing increased melt energy during cloudy conditions and others decreased melt energy. The complex association of clouds with melt energy is not amenable to simple relationships due to many interacting physical processes (direct radiative forcing; surface albedo; and co-variance with temperature, humidity and wind) but is most closely related to the effect of clouds on net radiation. These results motivate the use of physics-based surface energy balance models for representing glacier–climate relationships in regional- and global-scale assessments of glacier response to climate change. Article in Journal/Newspaper The Cryosphere Niedersächsisches Online-Archiv NOA The Cryosphere 16 8 3331 3356
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Conway, Jonathan P.
Abermann, Jakob
Andreassen, Liss M.
Azam, Mohd Farooq
Cullen, Nicolas J.
Fitzpatrick, Noel
Giesen, Rianne H.
Langley, Kirsty
MacDonell, Shelley
Mölg, Thomas
Radić, Valentina
Reijmer, Carleen H.
Sicart, Jean-Emmanuel
Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments
topic_facet article
Verlagsveröffentlichung
description Clouds are an important component of the climate system, yet our understanding of how they directly and indirectly affect glacier melt in different climates is incomplete. Here we analyse high-quality datasets from 16 mountain glaciers in diverse climates around the globe to better understand how relationships between clouds and near-surface meteorology, radiation and surface energy balance vary. The seasonal cycle of cloud frequency varies markedly between mountain glacier sites. During the main melt season at each site, an increase in cloud cover is associated with increased vapour pressure and relative humidity, but relationships to wind speed are site specific. At colder sites (average near-surface air temperature in the melt season <0 ∘C), air temperature generally increases with increasing cloudiness, while for warmer sites (average near-surface air temperature in the melt season ≫0 ∘C), air temperature decreases with increasing cloudiness. At all sites, surface melt is more frequent in cloudy compared to clear-sky conditions. The proportion of melt from temperature-dependent energy fluxes (incoming longwave radiation, turbulent sensible heat and latent heat) also universally increases in cloudy conditions. However, cloud cover does not affect daily total melt in a universal way, with some sites showing increased melt energy during cloudy conditions and others decreased melt energy. The complex association of clouds with melt energy is not amenable to simple relationships due to many interacting physical processes (direct radiative forcing; surface albedo; and co-variance with temperature, humidity and wind) but is most closely related to the effect of clouds on net radiation. These results motivate the use of physics-based surface energy balance models for representing glacier–climate relationships in regional- and global-scale assessments of glacier response to climate change.
format Article in Journal/Newspaper
author Conway, Jonathan P.
Abermann, Jakob
Andreassen, Liss M.
Azam, Mohd Farooq
Cullen, Nicolas J.
Fitzpatrick, Noel
Giesen, Rianne H.
Langley, Kirsty
MacDonell, Shelley
Mölg, Thomas
Radić, Valentina
Reijmer, Carleen H.
Sicart, Jean-Emmanuel
author_facet Conway, Jonathan P.
Abermann, Jakob
Andreassen, Liss M.
Azam, Mohd Farooq
Cullen, Nicolas J.
Fitzpatrick, Noel
Giesen, Rianne H.
Langley, Kirsty
MacDonell, Shelley
Mölg, Thomas
Radić, Valentina
Reijmer, Carleen H.
Sicart, Jean-Emmanuel
author_sort Conway, Jonathan P.
title Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments
title_short Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments
title_full Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments
title_fullStr Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments
title_full_unstemmed Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments
title_sort cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments
publisher Copernicus Publications
publishDate 2022
url https://doi.org/10.5194/tc-16-3331-2022
https://noa.gwlb.de/receive/cop_mods_00062390
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00061669/tc-16-3331-2022.pdf
https://tc.copernicus.org/articles/16/3331/2022/tc-16-3331-2022.pdf
genre The Cryosphere
genre_facet The Cryosphere
op_relation The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424
https://doi.org/10.5194/tc-16-3331-2022
https://noa.gwlb.de/receive/cop_mods_00062390
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00061669/tc-16-3331-2022.pdf
https://tc.copernicus.org/articles/16/3331/2022/tc-16-3331-2022.pdf
op_rights https://creativecommons.org/licenses/by/4.0/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/tc-16-3331-2022
container_title The Cryosphere
container_volume 16
container_issue 8
container_start_page 3331
op_container_end_page 3356
_version_ 1766216733363798016