Aerosol models from the AERONET database: application to surface reflectance validation

Aerosols play a critical role in radiative transfer within the atmosphere, and they have a significant impact on climate change. In this paper, we propose and implement a framework for developing an aerosol model using their microphysical properties. Such microphysical properties as the size distrib...

Full description

Bibliographic Details
Published in:Atmospheric Measurement Techniques
Main Authors: Roger, Jean-Claude, Vermote, Eric, Skakun, Sergii, Murphy, Emilie, Dubovik, Oleg, Kalecinski, Natacha, Korgo, Bruno, Holben, Brent
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
Online Access:https://doi.org/10.5194/amt-15-1123-2022
https://noa.gwlb.de/receive/cop_mods_00060290
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00059935/amt-15-1123-2022.pdf
https://amt.copernicus.org/articles/15/1123/2022/amt-15-1123-2022.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00060290
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00060290 2023-05-15T13:07:13+02:00 Aerosol models from the AERONET database: application to surface reflectance validation Roger, Jean-Claude Vermote, Eric Skakun, Sergii Murphy, Emilie Dubovik, Oleg Kalecinski, Natacha Korgo, Bruno Holben, Brent 2022-03 electronic https://doi.org/10.5194/amt-15-1123-2022 https://noa.gwlb.de/receive/cop_mods_00060290 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00059935/amt-15-1123-2022.pdf https://amt.copernicus.org/articles/15/1123/2022/amt-15-1123-2022.pdf eng eng Copernicus Publications Atmospheric Measurement Techniques -- http://www.bibliothek.uni-regensburg.de/ezeit/?2505596 -- http://www.atmospheric-measurement-techniques.net/ -- 1867-8548 https://doi.org/10.5194/amt-15-1123-2022 https://noa.gwlb.de/receive/cop_mods_00060290 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00059935/amt-15-1123-2022.pdf https://amt.copernicus.org/articles/15/1123/2022/amt-15-1123-2022.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess CC-BY article Verlagsveröffentlichung article Text doc-type:article 2022 ftnonlinearchiv https://doi.org/10.5194/amt-15-1123-2022 2022-03-07T00:09:02Z Aerosols play a critical role in radiative transfer within the atmosphere, and they have a significant impact on climate change. In this paper, we propose and implement a framework for developing an aerosol model using their microphysical properties. Such microphysical properties as the size distribution, the complex refractive index, and the percentage of sphericity are derived from the global AERosol RObotic NETwork (AERONET). These measurements, however, are typically retrieved when almucantar measurement procedures are performed (i.e., early mornings and late afternoons with clear sky) and might not have a temporal correspondence to a satellite overpass time, so a valid validation of satellite-derived products cannot be carried out. To address this problem of temporal inconsistency of satellite and ground-based measurements, we developed an approach to retrieve these microphysical properties (and the corresponding aerosol model) using the optical thickness at 440 nm, τ440, and the Ångström coefficient between 440 and 870 nm, α440–870. Such aerosol models were developed for 851 AERONET sites within the last 28 years. Obtained results suggest that empirically microphysical properties can be retrieved with uncertainties of up to 23 %. An exception is the imaginary part of the refractive index ni, for which the derived uncertainties reach up to 38 %. These specific parametric models of aerosol can be used for the studies when retrieval of microphysical properties is required as well as validation of satellite-derived products over land. Specifically, we demonstrate the usefulness of the aerosol models to validate surface reflectance records over land derived from optical remote sensing sensors. We then quantify the propagation of uncertainties in the surface reflectance due to uncertainties with the aerosol model retrieval that is used as a reference from radiative transfer simulations. Results indicate that individual aerosol microphysical properties can impact uncertainties in surface reflectance retrievals between 3.5 × 10−5 to 1 × 10−3 (in reflectance units). The overall impact of microphysical properties combined yields an overall uncertainty in surface reflectance < 0.004 (in reflectance units). That corresponds, for example, to 1 to 3 % of the retrieved surface reflectance in the red spectral band (620–670 nm) by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. These uncertainty values are well below the specification (0.005 + 0.05ρ; ρ is the retrieved surface reflectance) used for the MODIS atmospheric correction. Article in Journal/Newspaper Aerosol Robotic Network Niedersächsisches Online-Archiv NOA Atmospheric Measurement Techniques 15 5 1123 1144
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Roger, Jean-Claude
Vermote, Eric
Skakun, Sergii
Murphy, Emilie
Dubovik, Oleg
Kalecinski, Natacha
Korgo, Bruno
Holben, Brent
Aerosol models from the AERONET database: application to surface reflectance validation
topic_facet article
Verlagsveröffentlichung
description Aerosols play a critical role in radiative transfer within the atmosphere, and they have a significant impact on climate change. In this paper, we propose and implement a framework for developing an aerosol model using their microphysical properties. Such microphysical properties as the size distribution, the complex refractive index, and the percentage of sphericity are derived from the global AERosol RObotic NETwork (AERONET). These measurements, however, are typically retrieved when almucantar measurement procedures are performed (i.e., early mornings and late afternoons with clear sky) and might not have a temporal correspondence to a satellite overpass time, so a valid validation of satellite-derived products cannot be carried out. To address this problem of temporal inconsistency of satellite and ground-based measurements, we developed an approach to retrieve these microphysical properties (and the corresponding aerosol model) using the optical thickness at 440 nm, τ440, and the Ångström coefficient between 440 and 870 nm, α440–870. Such aerosol models were developed for 851 AERONET sites within the last 28 years. Obtained results suggest that empirically microphysical properties can be retrieved with uncertainties of up to 23 %. An exception is the imaginary part of the refractive index ni, for which the derived uncertainties reach up to 38 %. These specific parametric models of aerosol can be used for the studies when retrieval of microphysical properties is required as well as validation of satellite-derived products over land. Specifically, we demonstrate the usefulness of the aerosol models to validate surface reflectance records over land derived from optical remote sensing sensors. We then quantify the propagation of uncertainties in the surface reflectance due to uncertainties with the aerosol model retrieval that is used as a reference from radiative transfer simulations. Results indicate that individual aerosol microphysical properties can impact uncertainties in surface reflectance retrievals between 3.5 × 10−5 to 1 × 10−3 (in reflectance units). The overall impact of microphysical properties combined yields an overall uncertainty in surface reflectance < 0.004 (in reflectance units). That corresponds, for example, to 1 to 3 % of the retrieved surface reflectance in the red spectral band (620–670 nm) by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. These uncertainty values are well below the specification (0.005 + 0.05ρ; ρ is the retrieved surface reflectance) used for the MODIS atmospheric correction.
format Article in Journal/Newspaper
author Roger, Jean-Claude
Vermote, Eric
Skakun, Sergii
Murphy, Emilie
Dubovik, Oleg
Kalecinski, Natacha
Korgo, Bruno
Holben, Brent
author_facet Roger, Jean-Claude
Vermote, Eric
Skakun, Sergii
Murphy, Emilie
Dubovik, Oleg
Kalecinski, Natacha
Korgo, Bruno
Holben, Brent
author_sort Roger, Jean-Claude
title Aerosol models from the AERONET database: application to surface reflectance validation
title_short Aerosol models from the AERONET database: application to surface reflectance validation
title_full Aerosol models from the AERONET database: application to surface reflectance validation
title_fullStr Aerosol models from the AERONET database: application to surface reflectance validation
title_full_unstemmed Aerosol models from the AERONET database: application to surface reflectance validation
title_sort aerosol models from the aeronet database: application to surface reflectance validation
publisher Copernicus Publications
publishDate 2022
url https://doi.org/10.5194/amt-15-1123-2022
https://noa.gwlb.de/receive/cop_mods_00060290
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00059935/amt-15-1123-2022.pdf
https://amt.copernicus.org/articles/15/1123/2022/amt-15-1123-2022.pdf
genre Aerosol Robotic Network
genre_facet Aerosol Robotic Network
op_relation Atmospheric Measurement Techniques -- http://www.bibliothek.uni-regensburg.de/ezeit/?2505596 -- http://www.atmospheric-measurement-techniques.net/ -- 1867-8548
https://doi.org/10.5194/amt-15-1123-2022
https://noa.gwlb.de/receive/cop_mods_00060290
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00059935/amt-15-1123-2022.pdf
https://amt.copernicus.org/articles/15/1123/2022/amt-15-1123-2022.pdf
op_rights https://creativecommons.org/licenses/by/4.0/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/amt-15-1123-2022
container_title Atmospheric Measurement Techniques
container_volume 15
container_issue 5
container_start_page 1123
op_container_end_page 1144
_version_ 1766041204262174720