Reviews and syntheses: Arctic fire regimes and emissions in the 21st century
In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing current and future Arcti...
Published in: | Biogeosciences |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2021
|
Subjects: | |
Online Access: | https://doi.org/10.5194/bg-18-5053-2021 https://noa.gwlb.de/receive/cop_mods_00058147 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00057797/bg-18-5053-2021.pdf https://bg.copernicus.org/articles/18/5053/2021/bg-18-5053-2021.pdf |
id |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00058147 |
---|---|
record_format |
openpolar |
spelling |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00058147 2024-09-15T17:38:36+00:00 Reviews and syntheses: Arctic fire regimes and emissions in the 21st century McCarty, Jessica L. Aalto, Juha Paunu, Ville-Veikko Arnold, Steve R. Eckhardt, Sabine Klimont, Zbigniew Fain, Justin J. Evangeliou, Nikolaos Venäläinen, Ari Tchebakova, Nadezhda M. Parfenova, Elena I. Kupiainen, Kaarle Soja, Amber J. Huang, Lin Wilson, Simon 2021-09 electronic https://doi.org/10.5194/bg-18-5053-2021 https://noa.gwlb.de/receive/cop_mods_00058147 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00057797/bg-18-5053-2021.pdf https://bg.copernicus.org/articles/18/5053/2021/bg-18-5053-2021.pdf eng eng Copernicus Publications Biogeosciences -- http://www.bibliothek.uni-regensburg.de/ezeit/?2158181 -- http://www.copernicus.org/EGU/bg/bg.html -- 1726-4189 https://doi.org/10.5194/bg-18-5053-2021 https://noa.gwlb.de/receive/cop_mods_00058147 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00057797/bg-18-5053-2021.pdf https://bg.copernicus.org/articles/18/5053/2021/bg-18-5053-2021.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2021 ftnonlinearchiv https://doi.org/10.5194/bg-18-5053-2021 2024-06-26T04:38:21Z In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing current and future Arctic fire regimes will be important for fire and land management as well as understanding current and predicting future fire emissions. The objectives of this review were driven by policy questions identified by the Arctic Monitoring and Assessment Programme (AMAP) Working Group and posed to its Expert Group on Short-Lived Climate Forcers. This review synthesizes current understanding of the changing Arctic and boreal fire regimes, particularly as fire activity and its response to future climate change in the pan-Arctic have consequences for Arctic Council states aiming to mitigate and adapt to climate change in the north. The conclusions from our synthesis are the following. (1) Current and future Arctic fires, and the adjacent boreal region, are driven by natural (i.e. lightning) and human-caused ignition sources, including fires caused by timber and energy extraction, prescribed burning for landscape management, and tourism activities. Little is published in the scientific literature about cultural burning by Indigenous populations across the pan-Arctic, and questions remain on the source of ignitions above 70∘ N in Arctic Russia. (2) Climate change is expected to make Arctic fires more likely by increasing the likelihood of extreme fire weather, increased lightning activity, and drier vegetative and ground fuel conditions. (3) To some extent, shifting agricultural land use and forest transitions from forest–steppe to steppe, tundra to taiga, and coniferous to deciduous in a warmer climate may increase and decrease open biomass burning, depending on land use in addition to climate-driven biome shifts. However, at the country and landscape scales, these relationships are not well established. (4) Current black carbon ... Article in Journal/Newspaper AMAP Arctic Council black carbon Climate change taiga Tundra Niedersächsisches Online-Archiv NOA Biogeosciences 18 18 5053 5083 |
institution |
Open Polar |
collection |
Niedersächsisches Online-Archiv NOA |
op_collection_id |
ftnonlinearchiv |
language |
English |
topic |
article Verlagsveröffentlichung |
spellingShingle |
article Verlagsveröffentlichung McCarty, Jessica L. Aalto, Juha Paunu, Ville-Veikko Arnold, Steve R. Eckhardt, Sabine Klimont, Zbigniew Fain, Justin J. Evangeliou, Nikolaos Venäläinen, Ari Tchebakova, Nadezhda M. Parfenova, Elena I. Kupiainen, Kaarle Soja, Amber J. Huang, Lin Wilson, Simon Reviews and syntheses: Arctic fire regimes and emissions in the 21st century |
topic_facet |
article Verlagsveröffentlichung |
description |
In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing current and future Arctic fire regimes will be important for fire and land management as well as understanding current and predicting future fire emissions. The objectives of this review were driven by policy questions identified by the Arctic Monitoring and Assessment Programme (AMAP) Working Group and posed to its Expert Group on Short-Lived Climate Forcers. This review synthesizes current understanding of the changing Arctic and boreal fire regimes, particularly as fire activity and its response to future climate change in the pan-Arctic have consequences for Arctic Council states aiming to mitigate and adapt to climate change in the north. The conclusions from our synthesis are the following. (1) Current and future Arctic fires, and the adjacent boreal region, are driven by natural (i.e. lightning) and human-caused ignition sources, including fires caused by timber and energy extraction, prescribed burning for landscape management, and tourism activities. Little is published in the scientific literature about cultural burning by Indigenous populations across the pan-Arctic, and questions remain on the source of ignitions above 70∘ N in Arctic Russia. (2) Climate change is expected to make Arctic fires more likely by increasing the likelihood of extreme fire weather, increased lightning activity, and drier vegetative and ground fuel conditions. (3) To some extent, shifting agricultural land use and forest transitions from forest–steppe to steppe, tundra to taiga, and coniferous to deciduous in a warmer climate may increase and decrease open biomass burning, depending on land use in addition to climate-driven biome shifts. However, at the country and landscape scales, these relationships are not well established. (4) Current black carbon ... |
format |
Article in Journal/Newspaper |
author |
McCarty, Jessica L. Aalto, Juha Paunu, Ville-Veikko Arnold, Steve R. Eckhardt, Sabine Klimont, Zbigniew Fain, Justin J. Evangeliou, Nikolaos Venäläinen, Ari Tchebakova, Nadezhda M. Parfenova, Elena I. Kupiainen, Kaarle Soja, Amber J. Huang, Lin Wilson, Simon |
author_facet |
McCarty, Jessica L. Aalto, Juha Paunu, Ville-Veikko Arnold, Steve R. Eckhardt, Sabine Klimont, Zbigniew Fain, Justin J. Evangeliou, Nikolaos Venäläinen, Ari Tchebakova, Nadezhda M. Parfenova, Elena I. Kupiainen, Kaarle Soja, Amber J. Huang, Lin Wilson, Simon |
author_sort |
McCarty, Jessica L. |
title |
Reviews and syntheses: Arctic fire regimes and emissions in the 21st century |
title_short |
Reviews and syntheses: Arctic fire regimes and emissions in the 21st century |
title_full |
Reviews and syntheses: Arctic fire regimes and emissions in the 21st century |
title_fullStr |
Reviews and syntheses: Arctic fire regimes and emissions in the 21st century |
title_full_unstemmed |
Reviews and syntheses: Arctic fire regimes and emissions in the 21st century |
title_sort |
reviews and syntheses: arctic fire regimes and emissions in the 21st century |
publisher |
Copernicus Publications |
publishDate |
2021 |
url |
https://doi.org/10.5194/bg-18-5053-2021 https://noa.gwlb.de/receive/cop_mods_00058147 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00057797/bg-18-5053-2021.pdf https://bg.copernicus.org/articles/18/5053/2021/bg-18-5053-2021.pdf |
genre |
AMAP Arctic Council black carbon Climate change taiga Tundra |
genre_facet |
AMAP Arctic Council black carbon Climate change taiga Tundra |
op_relation |
Biogeosciences -- http://www.bibliothek.uni-regensburg.de/ezeit/?2158181 -- http://www.copernicus.org/EGU/bg/bg.html -- 1726-4189 https://doi.org/10.5194/bg-18-5053-2021 https://noa.gwlb.de/receive/cop_mods_00058147 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00057797/bg-18-5053-2021.pdf https://bg.copernicus.org/articles/18/5053/2021/bg-18-5053-2021.pdf |
op_rights |
https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.5194/bg-18-5053-2021 |
container_title |
Biogeosciences |
container_volume |
18 |
container_issue |
18 |
container_start_page |
5053 |
op_container_end_page |
5083 |
_version_ |
1810474241214119936 |