Regional imprints of changes in the Atlantic Meridional Overturning Circulation in the eddy-rich ocean model VIKING20X
A hierarchy of global 1/4∘ (ORCA025) and Atlantic Ocean 1/20∘ nested (VIKING20X) ocean–sea-ice models is described. It is shown that the eddy-rich configurations performed in hindcasts of the past 50–60 years under CORE and JRA55-do atmospheric forcings realistically simulate the large-scale horizon...
Published in: | Ocean Science |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2021
|
Subjects: | |
Online Access: | https://doi.org/10.5194/os-17-1177-2021 https://noa.gwlb.de/receive/cop_mods_00058011 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00057661/os-17-1177-2021.pdf https://os.copernicus.org/articles/17/1177/2021/os-17-1177-2021.pdf |
Summary: | A hierarchy of global 1/4∘ (ORCA025) and Atlantic Ocean 1/20∘ nested (VIKING20X) ocean–sea-ice models is described. It is shown that the eddy-rich configurations performed in hindcasts of the past 50–60 years under CORE and JRA55-do atmospheric forcings realistically simulate the large-scale horizontal circulation, the distribution of the mesoscale, overflow and convective processes, and the representation of regional current systems in the North and South Atlantic. The representation of the Atlantic Meridional Overturning Circulation (AMOC), and in particular the long-term temporal evolution, strongly depends on numerical choices for the application of freshwater fluxes. The interannual variability of the AMOC instead is highly correlated among the model experiments and also with observations, including the 2010 minimum observed by RAPID at 26.5∘ N. This points to a dominant role of the wind forcing. The ability of the model to represent regional observations in western boundary current (WBC) systems at 53∘ N, 26.5∘ N and 11∘ S is explored. The question is investigated of whether WBC systems are able to represent the AMOC, and in particular whether these WBC systems exhibit similar temporal evolution to that of the zonally integrated AMOC. Apart from the basin-scale measurements at 26.5∘ N, it is shown that in particular the outflow of North Atlantic Deepwater at 53∘ N is a good indicator of the subpolar AMOC trend during the recent decades, once provided in density coordinates. The good reproduction of observed AMOC and WBC trends in the most reasonable simulations indicate that the eddy-rich VIKING20X is capable of representing realistic forcing-related and ocean-intrinsic trends. |
---|