Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow

Heat transport in snowpacks is understood to occur through the two processes of heat conduction and latent heat transport carried by water vapor, which are generally treated as decoupled from one another. This paper investigates the coupling between both these processes in snow, with an emphasis on...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Fourteau, Kévin, Domine, Florent, Hagenmuller, Pascal
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2021
Subjects:
Online Access:https://doi.org/10.5194/tc-15-2739-2021
https://noa.gwlb.de/receive/cop_mods_00057073
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00056723/tc-15-2739-2021.pdf
https://tc.copernicus.org/articles/15/2739/2021/tc-15-2739-2021.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00057073
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00057073 2023-05-15T18:32:32+02:00 Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow Fourteau, Kévin Domine, Florent Hagenmuller, Pascal 2021-06 electronic https://doi.org/10.5194/tc-15-2739-2021 https://noa.gwlb.de/receive/cop_mods_00057073 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00056723/tc-15-2739-2021.pdf https://tc.copernicus.org/articles/15/2739/2021/tc-15-2739-2021.pdf eng eng Copernicus Publications The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-15-2739-2021 https://noa.gwlb.de/receive/cop_mods_00057073 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00056723/tc-15-2739-2021.pdf https://tc.copernicus.org/articles/15/2739/2021/tc-15-2739-2021.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess CC-BY article Verlagsveröffentlichung article Text doc-type:article 2021 ftnonlinearchiv https://doi.org/10.5194/tc-15-2739-2021 2022-02-08T22:33:46Z Heat transport in snowpacks is understood to occur through the two processes of heat conduction and latent heat transport carried by water vapor, which are generally treated as decoupled from one another. This paper investigates the coupling between both these processes in snow, with an emphasis on the impacts of the kinetics of the sublimation and deposition of water vapor onto ice. In the case when kinetics is fast, latent heat exchanges at ice surfaces modify their temperature and therefore the thermal gradient within ice crystals and the heat conduction through the entire microstructure. Furthermore, in this case, the effective thermal conductivity of snow can be expressed by a purely conductive term complemented by a term directly proportional to the effective diffusion coefficient of water vapor in snow, which illustrates the inextricable coupling between heat conduction and water vapor transport. Numerical simulations on measured three-dimensional snow microstructures reveal that the effective thermal conductivity of snow can be significantly larger, by up to about 50 % for low-density snow, than if water vapor transport is neglected. A comparison of our numerical simulations with literature data suggests that the fast kinetics hypothesis could be a reasonable assumption for modeling heat and mass transport in snow. Lastly, we demonstrate that under the fast kinetics hypothesis the effective diffusion coefficient of water vapor is related to the effective thermal conductivity by a simple linear relationship. Under such a condition, the effective diffusion coefficient of water vapor is expected to lie in the narrow 100 % to about 80 % range of the value of the diffusion coefficient of water vapor in air for most seasonal snows. This may greatly facilitate the parameterization of water vapor diffusion of snow in models. Article in Journal/Newspaper The Cryosphere Niedersächsisches Online-Archiv NOA The Cryosphere 15 6 2739 2755
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Fourteau, Kévin
Domine, Florent
Hagenmuller, Pascal
Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
topic_facet article
Verlagsveröffentlichung
description Heat transport in snowpacks is understood to occur through the two processes of heat conduction and latent heat transport carried by water vapor, which are generally treated as decoupled from one another. This paper investigates the coupling between both these processes in snow, with an emphasis on the impacts of the kinetics of the sublimation and deposition of water vapor onto ice. In the case when kinetics is fast, latent heat exchanges at ice surfaces modify their temperature and therefore the thermal gradient within ice crystals and the heat conduction through the entire microstructure. Furthermore, in this case, the effective thermal conductivity of snow can be expressed by a purely conductive term complemented by a term directly proportional to the effective diffusion coefficient of water vapor in snow, which illustrates the inextricable coupling between heat conduction and water vapor transport. Numerical simulations on measured three-dimensional snow microstructures reveal that the effective thermal conductivity of snow can be significantly larger, by up to about 50 % for low-density snow, than if water vapor transport is neglected. A comparison of our numerical simulations with literature data suggests that the fast kinetics hypothesis could be a reasonable assumption for modeling heat and mass transport in snow. Lastly, we demonstrate that under the fast kinetics hypothesis the effective diffusion coefficient of water vapor is related to the effective thermal conductivity by a simple linear relationship. Under such a condition, the effective diffusion coefficient of water vapor is expected to lie in the narrow 100 % to about 80 % range of the value of the diffusion coefficient of water vapor in air for most seasonal snows. This may greatly facilitate the parameterization of water vapor diffusion of snow in models.
format Article in Journal/Newspaper
author Fourteau, Kévin
Domine, Florent
Hagenmuller, Pascal
author_facet Fourteau, Kévin
Domine, Florent
Hagenmuller, Pascal
author_sort Fourteau, Kévin
title Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
title_short Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
title_full Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
title_fullStr Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
title_full_unstemmed Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
title_sort impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
publisher Copernicus Publications
publishDate 2021
url https://doi.org/10.5194/tc-15-2739-2021
https://noa.gwlb.de/receive/cop_mods_00057073
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00056723/tc-15-2739-2021.pdf
https://tc.copernicus.org/articles/15/2739/2021/tc-15-2739-2021.pdf
genre The Cryosphere
genre_facet The Cryosphere
op_relation The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424
https://doi.org/10.5194/tc-15-2739-2021
https://noa.gwlb.de/receive/cop_mods_00057073
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00056723/tc-15-2739-2021.pdf
https://tc.copernicus.org/articles/15/2739/2021/tc-15-2739-2021.pdf
op_rights https://creativecommons.org/licenses/by/4.0/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/tc-15-2739-2021
container_title The Cryosphere
container_volume 15
container_issue 6
container_start_page 2739
op_container_end_page 2755
_version_ 1766216682565533696