Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins

The ocean response to carbon emissions involves the combined effect of an increase in atmospheric CO2, acting to enhance the ocean carbon storage, and climate change, acting to decrease the ocean carbon storage. This ocean response can be characterised in terms of a carbon–concentration feedback and...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Katavouta, Anna, Williams, Richard G.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2021
Subjects:
Online Access:https://doi.org/10.5194/bg-18-3189-2021
https://noa.gwlb.de/receive/cop_mods_00056742
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00056392/bg-18-3189-2021.pdf
https://bg.copernicus.org/articles/18/3189/2021/bg-18-3189-2021.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00056742
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00056742 2023-05-15T14:59:05+02:00 Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins Katavouta, Anna Williams, Richard G. 2021-05 electronic https://doi.org/10.5194/bg-18-3189-2021 https://noa.gwlb.de/receive/cop_mods_00056742 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00056392/bg-18-3189-2021.pdf https://bg.copernicus.org/articles/18/3189/2021/bg-18-3189-2021.pdf eng eng Copernicus Publications Biogeosciences -- http://www.bibliothek.uni-regensburg.de/ezeit/?2158181 -- http://www.copernicus.org/EGU/bg/bg.html -- 1726-4189 https://doi.org/10.5194/bg-18-3189-2021 https://noa.gwlb.de/receive/cop_mods_00056742 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00056392/bg-18-3189-2021.pdf https://bg.copernicus.org/articles/18/3189/2021/bg-18-3189-2021.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess CC-BY article Verlagsveröffentlichung article Text doc-type:article 2021 ftnonlinearchiv https://doi.org/10.5194/bg-18-3189-2021 2022-02-08T22:33:55Z The ocean response to carbon emissions involves the combined effect of an increase in atmospheric CO2, acting to enhance the ocean carbon storage, and climate change, acting to decrease the ocean carbon storage. This ocean response can be characterised in terms of a carbon–concentration feedback and a carbon–climate feedback. The contribution from different ocean basins to these feedbacks on centennial timescales is explored using diagnostics of ocean carbonate chemistry, physical ventilation and biological processes in 11 CMIP6 Earth system models. To gain mechanistic insight, the dependence of these feedbacks on the Atlantic Meridional Overturning Circulation (AMOC) is also investigated in an idealised climate model and the CMIP6 models. For the carbon–concentration feedback, the Atlantic, Pacific and Southern oceans provide comparable contributions when estimated in terms of the volume-integrated carbon storage. This large contribution from the Atlantic Ocean relative to its size is due to strong local physical ventilation and an influx of carbon transported from the Southern Ocean. The Southern Ocean has large anthropogenic carbon uptake from the atmosphere, but its contribution to the carbon storage is relatively small due to large carbon transport to the other basins. For the carbon–climate feedback estimated in terms of carbon storage, the Atlantic and Arctic oceans provide the largest contributions relative to their size. In the Atlantic, this large contribution is primarily due to climate change acting to reduce the physical ventilation. In the Arctic, this large contribution is associated with a large warming per unit volume. The Southern Ocean provides a relatively small contribution to the carbon–climate feedback, due to competition between the climate effects of a decrease in solubility and physical ventilation and an increase in accumulation of regenerated carbon. The more poorly ventilated Indo-Pacific Ocean provides a small contribution to the carbon cycle feedbacks relative to its size. In the Atlantic Ocean, the carbon cycle feedbacks strongly depend on the AMOC strength and its weakening with warming. In the Arctic, there is a moderate correlation between the AMOC weakening and the carbon–climate feedback that is related to changes in carbonate chemistry. In the Pacific, Indian and Southern oceans, there is no clear correlation between the AMOC and the carbon cycle feedbacks, suggesting that other processes control the ocean ventilation and carbon storage there. Article in Journal/Newspaper Arctic Climate change Southern Ocean Niedersächsisches Online-Archiv NOA Arctic Indian Pacific Southern Ocean Biogeosciences 18 10 3189 3218
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Katavouta, Anna
Williams, Richard G.
Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins
topic_facet article
Verlagsveröffentlichung
description The ocean response to carbon emissions involves the combined effect of an increase in atmospheric CO2, acting to enhance the ocean carbon storage, and climate change, acting to decrease the ocean carbon storage. This ocean response can be characterised in terms of a carbon–concentration feedback and a carbon–climate feedback. The contribution from different ocean basins to these feedbacks on centennial timescales is explored using diagnostics of ocean carbonate chemistry, physical ventilation and biological processes in 11 CMIP6 Earth system models. To gain mechanistic insight, the dependence of these feedbacks on the Atlantic Meridional Overturning Circulation (AMOC) is also investigated in an idealised climate model and the CMIP6 models. For the carbon–concentration feedback, the Atlantic, Pacific and Southern oceans provide comparable contributions when estimated in terms of the volume-integrated carbon storage. This large contribution from the Atlantic Ocean relative to its size is due to strong local physical ventilation and an influx of carbon transported from the Southern Ocean. The Southern Ocean has large anthropogenic carbon uptake from the atmosphere, but its contribution to the carbon storage is relatively small due to large carbon transport to the other basins. For the carbon–climate feedback estimated in terms of carbon storage, the Atlantic and Arctic oceans provide the largest contributions relative to their size. In the Atlantic, this large contribution is primarily due to climate change acting to reduce the physical ventilation. In the Arctic, this large contribution is associated with a large warming per unit volume. The Southern Ocean provides a relatively small contribution to the carbon–climate feedback, due to competition between the climate effects of a decrease in solubility and physical ventilation and an increase in accumulation of regenerated carbon. The more poorly ventilated Indo-Pacific Ocean provides a small contribution to the carbon cycle feedbacks relative to its size. In the Atlantic Ocean, the carbon cycle feedbacks strongly depend on the AMOC strength and its weakening with warming. In the Arctic, there is a moderate correlation between the AMOC weakening and the carbon–climate feedback that is related to changes in carbonate chemistry. In the Pacific, Indian and Southern oceans, there is no clear correlation between the AMOC and the carbon cycle feedbacks, suggesting that other processes control the ocean ventilation and carbon storage there.
format Article in Journal/Newspaper
author Katavouta, Anna
Williams, Richard G.
author_facet Katavouta, Anna
Williams, Richard G.
author_sort Katavouta, Anna
title Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins
title_short Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins
title_full Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins
title_fullStr Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins
title_full_unstemmed Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins
title_sort ocean carbon cycle feedbacks in cmip6 models: contributions from different basins
publisher Copernicus Publications
publishDate 2021
url https://doi.org/10.5194/bg-18-3189-2021
https://noa.gwlb.de/receive/cop_mods_00056742
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00056392/bg-18-3189-2021.pdf
https://bg.copernicus.org/articles/18/3189/2021/bg-18-3189-2021.pdf
geographic Arctic
Indian
Pacific
Southern Ocean
geographic_facet Arctic
Indian
Pacific
Southern Ocean
genre Arctic
Climate change
Southern Ocean
genre_facet Arctic
Climate change
Southern Ocean
op_relation Biogeosciences -- http://www.bibliothek.uni-regensburg.de/ezeit/?2158181 -- http://www.copernicus.org/EGU/bg/bg.html -- 1726-4189
https://doi.org/10.5194/bg-18-3189-2021
https://noa.gwlb.de/receive/cop_mods_00056742
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00056392/bg-18-3189-2021.pdf
https://bg.copernicus.org/articles/18/3189/2021/bg-18-3189-2021.pdf
op_rights https://creativecommons.org/licenses/by/4.0/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/bg-18-3189-2021
container_title Biogeosciences
container_volume 18
container_issue 10
container_start_page 3189
op_container_end_page 3218
_version_ 1766331223958880256