Methane dynamics in three different Siberian water bodies under winter and summer conditions
Arctic regions and their water bodies are affected by a rapidly warming climate. Arctic lakes and small ponds are known to act as an important source of atmospheric methane. However, not much is known about other types of water bodies in permafrost regions, which include major rivers and coastal bay...
Published in: | Biogeosciences |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2021
|
Subjects: | |
Online Access: | https://doi.org/10.5194/bg-18-2047-2021 https://noa.gwlb.de/receive/cop_mods_00055992 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00055643/bg-18-2047-2021.pdf https://bg.copernicus.org/articles/18/2047/2021/bg-18-2047-2021.pdf |
id |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00055992 |
---|---|
record_format |
openpolar |
spelling |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00055992 2024-09-15T18:11:37+00:00 Methane dynamics in three different Siberian water bodies under winter and summer conditions Bussmann, Ingeborg Fedorova, Irina Juhls, Bennet Overduin, Pier Paul Winkel, Matthias 2021-03 electronic https://doi.org/10.5194/bg-18-2047-2021 https://noa.gwlb.de/receive/cop_mods_00055992 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00055643/bg-18-2047-2021.pdf https://bg.copernicus.org/articles/18/2047/2021/bg-18-2047-2021.pdf eng eng Copernicus Publications Biogeosciences -- http://www.bibliothek.uni-regensburg.de/ezeit/?2158181 -- http://www.copernicus.org/EGU/bg/bg.html -- 1726-4189 https://doi.org/10.5194/bg-18-2047-2021 https://noa.gwlb.de/receive/cop_mods_00055992 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00055643/bg-18-2047-2021.pdf https://bg.copernicus.org/articles/18/2047/2021/bg-18-2047-2021.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2021 ftnonlinearchiv https://doi.org/10.5194/bg-18-2047-2021 2024-06-26T04:41:37Z Arctic regions and their water bodies are affected by a rapidly warming climate. Arctic lakes and small ponds are known to act as an important source of atmospheric methane. However, not much is known about other types of water bodies in permafrost regions, which include major rivers and coastal bays as a transition type between freshwater and marine environments. We monitored dissolved methane concentrations in three different water bodies (Lena River, Tiksi Bay, and Lake Golzovoye, Siberia, Russia) over a period of 2 years. Sampling was carried out under ice cover (April) and in open water (July–August). The methane oxidation (MOX) rate and the fractional turnover rate (k′) in water and melted ice samples from the late winter of 2017 was determined with the radiotracer method. In the Lena River winter methane concentrations were a quarter of the summer concentrations (8 nmol L−1 vs. 31 nmol L−1), and mean winter MOX rate was low (0.023 nmol L−1 d−1). In contrast, Tiksi Bay winter methane concentrations were 10 times higher than in summer (103 nmol L−1 vs. 13 nmol L−1). Winter MOX rates showed a median of 0.305 nmol L−1 d−1. In Lake Golzovoye, median methane concentrations in winter were 40 times higher than in summer (1957 nmol L−1 vs. 49 nmol L−1). However, MOX was much higher in the lake (2.95 nmol L−1 d−1) than in either the river or bay. The temperature had a strong influence on the MOX ( Q10=2.72±0.69). In summer water temperatures ranged from 7–14 ∘C and in winter from −0.7 to 1.3 ∘C. In the ice cores a median methane concentration of 9 nM was observed, with no gradient between the ice surface and the bottom layer at the ice–water interface. MOX in the (melted) ice cores was mostly below the detection limit. Comparing methane concentrations in the ice with the underlaying water column revealed methane concentration in the water column 100–1000 times higher. The winter situation seemed to favor a methane accumulation under ice, especially in the lake with a stagnant water body. While on the other hand, in ... Article in Journal/Newspaper Ice lena river permafrost Tiksi Tiksi Bay Siberia Niedersächsisches Online-Archiv NOA Biogeosciences 18 6 2047 2061 |
institution |
Open Polar |
collection |
Niedersächsisches Online-Archiv NOA |
op_collection_id |
ftnonlinearchiv |
language |
English |
topic |
article Verlagsveröffentlichung |
spellingShingle |
article Verlagsveröffentlichung Bussmann, Ingeborg Fedorova, Irina Juhls, Bennet Overduin, Pier Paul Winkel, Matthias Methane dynamics in three different Siberian water bodies under winter and summer conditions |
topic_facet |
article Verlagsveröffentlichung |
description |
Arctic regions and their water bodies are affected by a rapidly warming climate. Arctic lakes and small ponds are known to act as an important source of atmospheric methane. However, not much is known about other types of water bodies in permafrost regions, which include major rivers and coastal bays as a transition type between freshwater and marine environments. We monitored dissolved methane concentrations in three different water bodies (Lena River, Tiksi Bay, and Lake Golzovoye, Siberia, Russia) over a period of 2 years. Sampling was carried out under ice cover (April) and in open water (July–August). The methane oxidation (MOX) rate and the fractional turnover rate (k′) in water and melted ice samples from the late winter of 2017 was determined with the radiotracer method. In the Lena River winter methane concentrations were a quarter of the summer concentrations (8 nmol L−1 vs. 31 nmol L−1), and mean winter MOX rate was low (0.023 nmol L−1 d−1). In contrast, Tiksi Bay winter methane concentrations were 10 times higher than in summer (103 nmol L−1 vs. 13 nmol L−1). Winter MOX rates showed a median of 0.305 nmol L−1 d−1. In Lake Golzovoye, median methane concentrations in winter were 40 times higher than in summer (1957 nmol L−1 vs. 49 nmol L−1). However, MOX was much higher in the lake (2.95 nmol L−1 d−1) than in either the river or bay. The temperature had a strong influence on the MOX ( Q10=2.72±0.69). In summer water temperatures ranged from 7–14 ∘C and in winter from −0.7 to 1.3 ∘C. In the ice cores a median methane concentration of 9 nM was observed, with no gradient between the ice surface and the bottom layer at the ice–water interface. MOX in the (melted) ice cores was mostly below the detection limit. Comparing methane concentrations in the ice with the underlaying water column revealed methane concentration in the water column 100–1000 times higher. The winter situation seemed to favor a methane accumulation under ice, especially in the lake with a stagnant water body. While on the other hand, in ... |
format |
Article in Journal/Newspaper |
author |
Bussmann, Ingeborg Fedorova, Irina Juhls, Bennet Overduin, Pier Paul Winkel, Matthias |
author_facet |
Bussmann, Ingeborg Fedorova, Irina Juhls, Bennet Overduin, Pier Paul Winkel, Matthias |
author_sort |
Bussmann, Ingeborg |
title |
Methane dynamics in three different Siberian water bodies under winter and summer conditions |
title_short |
Methane dynamics in three different Siberian water bodies under winter and summer conditions |
title_full |
Methane dynamics in three different Siberian water bodies under winter and summer conditions |
title_fullStr |
Methane dynamics in three different Siberian water bodies under winter and summer conditions |
title_full_unstemmed |
Methane dynamics in three different Siberian water bodies under winter and summer conditions |
title_sort |
methane dynamics in three different siberian water bodies under winter and summer conditions |
publisher |
Copernicus Publications |
publishDate |
2021 |
url |
https://doi.org/10.5194/bg-18-2047-2021 https://noa.gwlb.de/receive/cop_mods_00055992 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00055643/bg-18-2047-2021.pdf https://bg.copernicus.org/articles/18/2047/2021/bg-18-2047-2021.pdf |
genre |
Ice lena river permafrost Tiksi Tiksi Bay Siberia |
genre_facet |
Ice lena river permafrost Tiksi Tiksi Bay Siberia |
op_relation |
Biogeosciences -- http://www.bibliothek.uni-regensburg.de/ezeit/?2158181 -- http://www.copernicus.org/EGU/bg/bg.html -- 1726-4189 https://doi.org/10.5194/bg-18-2047-2021 https://noa.gwlb.de/receive/cop_mods_00055992 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00055643/bg-18-2047-2021.pdf https://bg.copernicus.org/articles/18/2047/2021/bg-18-2047-2021.pdf |
op_rights |
https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.5194/bg-18-2047-2021 |
container_title |
Biogeosciences |
container_volume |
18 |
container_issue |
6 |
container_start_page |
2047 |
op_container_end_page |
2061 |
_version_ |
1810449200381427712 |