Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean

Relative to their surface area, estuaries make a disproportionately large contribution of dissolved organic carbon (DOC) to the global carbon cycle, but it is unknown how this will change under a future climate. As such, the response of DOC fluxes from microbially dominated unvegetated sediments to...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Simone, Michelle N., Schulz, Kai G., Oakes, Joanne M., Eyre, Bradley D.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2021
Subjects:
Online Access:https://doi.org/10.5194/bg-18-1823-2021
https://noa.gwlb.de/receive/cop_mods_00055937
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00055588/bg-18-1823-2021.pdf
https://bg.copernicus.org/articles/18/1823/2021/bg-18-1823-2021.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00055937
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00055937 2023-05-15T17:50:33+02:00 Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean Simone, Michelle N. Schulz, Kai G. Oakes, Joanne M. Eyre, Bradley D. 2021-03 electronic https://doi.org/10.5194/bg-18-1823-2021 https://noa.gwlb.de/receive/cop_mods_00055937 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00055588/bg-18-1823-2021.pdf https://bg.copernicus.org/articles/18/1823/2021/bg-18-1823-2021.pdf eng eng Copernicus Publications Biogeosciences -- http://www.bibliothek.uni-regensburg.de/ezeit/?2158181 -- http://www.copernicus.org/EGU/bg/bg.html -- 1726-4189 https://doi.org/10.5194/bg-18-1823-2021 https://noa.gwlb.de/receive/cop_mods_00055937 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00055588/bg-18-1823-2021.pdf https://bg.copernicus.org/articles/18/1823/2021/bg-18-1823-2021.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess CC-BY article Verlagsveröffentlichung article Text doc-type:article 2021 ftnonlinearchiv https://doi.org/10.5194/bg-18-1823-2021 2022-02-08T22:34:17Z Relative to their surface area, estuaries make a disproportionately large contribution of dissolved organic carbon (DOC) to the global carbon cycle, but it is unknown how this will change under a future climate. As such, the response of DOC fluxes from microbially dominated unvegetated sediments to individual and combined future climate stressors of temperature change (from Δ−3 to Δ+5 ∘C compared to ambient mean temperatures) and ocean acidification (OA, ∼ 2× current CO2 partial pressure, pCO2) was investigated ex situ. Warming alone increased sediment heterotrophy, resulting in a proportional increase in sediment DOC uptake; sediments became net sinks of DOC (3.5 to 8.8 mmol C m−2 d−1) at warmer temperatures (Δ+3 and Δ+5 ∘C, respectively). This temperature response changed under OA conditions, with sediments becoming more autotrophic and a greater sink of DOC (up to 4× greater than under current pCO2 conditions). This response was attributed to the stimulation of heterotrophic bacteria with the autochthonous production of labile organic matter by microphytobenthos. Extrapolating these results to the global area of unvegetated subtidal estuarine sediments, we find that the future climate of warming (Δ+3 ∘C) and OA may decrease estuarine export of DOC by ∼ 80 % (∼ 150 Tg C yr−1) and have a disproportionately large impact on the global DOC budget. Article in Journal/Newspaper Ocean acidification Niedersächsisches Online-Archiv NOA Biogeosciences 18 5 1823 1838
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Simone, Michelle N.
Schulz, Kai G.
Oakes, Joanne M.
Eyre, Bradley D.
Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
topic_facet article
Verlagsveröffentlichung
description Relative to their surface area, estuaries make a disproportionately large contribution of dissolved organic carbon (DOC) to the global carbon cycle, but it is unknown how this will change under a future climate. As such, the response of DOC fluxes from microbially dominated unvegetated sediments to individual and combined future climate stressors of temperature change (from Δ−3 to Δ+5 ∘C compared to ambient mean temperatures) and ocean acidification (OA, ∼ 2× current CO2 partial pressure, pCO2) was investigated ex situ. Warming alone increased sediment heterotrophy, resulting in a proportional increase in sediment DOC uptake; sediments became net sinks of DOC (3.5 to 8.8 mmol C m−2 d−1) at warmer temperatures (Δ+3 and Δ+5 ∘C, respectively). This temperature response changed under OA conditions, with sediments becoming more autotrophic and a greater sink of DOC (up to 4× greater than under current pCO2 conditions). This response was attributed to the stimulation of heterotrophic bacteria with the autochthonous production of labile organic matter by microphytobenthos. Extrapolating these results to the global area of unvegetated subtidal estuarine sediments, we find that the future climate of warming (Δ+3 ∘C) and OA may decrease estuarine export of DOC by ∼ 80 % (∼ 150 Tg C yr−1) and have a disproportionately large impact on the global DOC budget.
format Article in Journal/Newspaper
author Simone, Michelle N.
Schulz, Kai G.
Oakes, Joanne M.
Eyre, Bradley D.
author_facet Simone, Michelle N.
Schulz, Kai G.
Oakes, Joanne M.
Eyre, Bradley D.
author_sort Simone, Michelle N.
title Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
title_short Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
title_full Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
title_fullStr Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
title_full_unstemmed Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
title_sort warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
publisher Copernicus Publications
publishDate 2021
url https://doi.org/10.5194/bg-18-1823-2021
https://noa.gwlb.de/receive/cop_mods_00055937
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00055588/bg-18-1823-2021.pdf
https://bg.copernicus.org/articles/18/1823/2021/bg-18-1823-2021.pdf
genre Ocean acidification
genre_facet Ocean acidification
op_relation Biogeosciences -- http://www.bibliothek.uni-regensburg.de/ezeit/?2158181 -- http://www.copernicus.org/EGU/bg/bg.html -- 1726-4189
https://doi.org/10.5194/bg-18-1823-2021
https://noa.gwlb.de/receive/cop_mods_00055937
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00055588/bg-18-1823-2021.pdf
https://bg.copernicus.org/articles/18/1823/2021/bg-18-1823-2021.pdf
op_rights https://creativecommons.org/licenses/by/4.0/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/bg-18-1823-2021
container_title Biogeosciences
container_volume 18
container_issue 5
container_start_page 1823
op_container_end_page 1838
_version_ 1766157352234385408