The mechanical origin of snow avalanche dynamics and flow regime transitions

Snow avalanches cause fatalities and economic damage. Key to their mitigation is the understanding of snow avalanche dynamics. This study investigates the dynamic behavior of snow avalanches, using the material point method (MPM) and an elastoplastic constitutive law for porous cohesive materials. B...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Li, Xingyue, Sovilla, Betty, Jiang, Chenfanfu, Gaume, Johan
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2020
Subjects:
Online Access:https://doi.org/10.5194/tc-14-3381-2020
https://noa.gwlb.de/receive/cop_mods_00054285
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00053936/tc-14-3381-2020.pdf
https://tc.copernicus.org/articles/14/3381/2020/tc-14-3381-2020.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00054285
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00054285 2023-05-15T18:32:32+02:00 The mechanical origin of snow avalanche dynamics and flow regime transitions Li, Xingyue Sovilla, Betty Jiang, Chenfanfu Gaume, Johan 2020-10 electronic https://doi.org/10.5194/tc-14-3381-2020 https://noa.gwlb.de/receive/cop_mods_00054285 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00053936/tc-14-3381-2020.pdf https://tc.copernicus.org/articles/14/3381/2020/tc-14-3381-2020.pdf eng eng Copernicus Publications The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-14-3381-2020 https://noa.gwlb.de/receive/cop_mods_00054285 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00053936/tc-14-3381-2020.pdf https://tc.copernicus.org/articles/14/3381/2020/tc-14-3381-2020.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess CC-BY article Verlagsveröffentlichung article Text doc-type:article 2020 ftnonlinearchiv https://doi.org/10.5194/tc-14-3381-2020 2022-02-08T22:35:05Z Snow avalanches cause fatalities and economic damage. Key to their mitigation is the understanding of snow avalanche dynamics. This study investigates the dynamic behavior of snow avalanches, using the material point method (MPM) and an elastoplastic constitutive law for porous cohesive materials. By virtue of the hybrid Eulerian–Lagrangian nature of the MPM, we can handle processes involving large deformations, collisions and fractures. Meanwhile, the elastoplastic model enables us to capture the mixed-mode failure of snow, including tensile, shear and compressive failure. Using the proposed numerical approach, distinct behaviors of snow avalanches, from fluid-like to solid-like, are examined with varied snow mechanical properties. In particular, four flow regimes reported from real observations are identified, namely, cold dense, warm shear, warm plug and sliding slab regimes. Moreover, notable surges and roll waves are observed peculiarly for flows in transition from cold dense to warm shear regimes. Each of the flow regimes shows unique flow characteristics in terms of the evolution of the avalanche front, the free-surface shape, and the vertical velocity profile. We further explore the influence of slope geometry on the behavior of snow avalanches, including the effect of slope angle and path length on the maximum flow velocity, the runout angle and the deposit height. Unified trends are obtained between the normalized maximum flow velocity and the scaled runout angle as well as the scaled deposit height, reflecting analogous rules with different geometry conditions of the slope. It is found that the maximum flow velocity is mainly controlled by the friction between the bed and the flow, the geometry of the slope, and the snow properties. We reveal the crucial effect of both flow and deposition behaviors on the runout angle. Furthermore, our MPM modeling is calibrated and tested with simulations of real snow avalanches. The evolution of the avalanche front position and velocity from the MPM modeling shows reasonable agreement with the measurement data from the literature. The MPM approach serves as a novel and promising tool to offer systematic and quantitative analysis for mitigation of gravitational hazards like snow avalanches. Article in Journal/Newspaper The Cryosphere Niedersächsisches Online-Archiv NOA The Cryosphere 14 10 3381 3398
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Li, Xingyue
Sovilla, Betty
Jiang, Chenfanfu
Gaume, Johan
The mechanical origin of snow avalanche dynamics and flow regime transitions
topic_facet article
Verlagsveröffentlichung
description Snow avalanches cause fatalities and economic damage. Key to their mitigation is the understanding of snow avalanche dynamics. This study investigates the dynamic behavior of snow avalanches, using the material point method (MPM) and an elastoplastic constitutive law for porous cohesive materials. By virtue of the hybrid Eulerian–Lagrangian nature of the MPM, we can handle processes involving large deformations, collisions and fractures. Meanwhile, the elastoplastic model enables us to capture the mixed-mode failure of snow, including tensile, shear and compressive failure. Using the proposed numerical approach, distinct behaviors of snow avalanches, from fluid-like to solid-like, are examined with varied snow mechanical properties. In particular, four flow regimes reported from real observations are identified, namely, cold dense, warm shear, warm plug and sliding slab regimes. Moreover, notable surges and roll waves are observed peculiarly for flows in transition from cold dense to warm shear regimes. Each of the flow regimes shows unique flow characteristics in terms of the evolution of the avalanche front, the free-surface shape, and the vertical velocity profile. We further explore the influence of slope geometry on the behavior of snow avalanches, including the effect of slope angle and path length on the maximum flow velocity, the runout angle and the deposit height. Unified trends are obtained between the normalized maximum flow velocity and the scaled runout angle as well as the scaled deposit height, reflecting analogous rules with different geometry conditions of the slope. It is found that the maximum flow velocity is mainly controlled by the friction between the bed and the flow, the geometry of the slope, and the snow properties. We reveal the crucial effect of both flow and deposition behaviors on the runout angle. Furthermore, our MPM modeling is calibrated and tested with simulations of real snow avalanches. The evolution of the avalanche front position and velocity from the MPM modeling shows reasonable agreement with the measurement data from the literature. The MPM approach serves as a novel and promising tool to offer systematic and quantitative analysis for mitigation of gravitational hazards like snow avalanches.
format Article in Journal/Newspaper
author Li, Xingyue
Sovilla, Betty
Jiang, Chenfanfu
Gaume, Johan
author_facet Li, Xingyue
Sovilla, Betty
Jiang, Chenfanfu
Gaume, Johan
author_sort Li, Xingyue
title The mechanical origin of snow avalanche dynamics and flow regime transitions
title_short The mechanical origin of snow avalanche dynamics and flow regime transitions
title_full The mechanical origin of snow avalanche dynamics and flow regime transitions
title_fullStr The mechanical origin of snow avalanche dynamics and flow regime transitions
title_full_unstemmed The mechanical origin of snow avalanche dynamics and flow regime transitions
title_sort mechanical origin of snow avalanche dynamics and flow regime transitions
publisher Copernicus Publications
publishDate 2020
url https://doi.org/10.5194/tc-14-3381-2020
https://noa.gwlb.de/receive/cop_mods_00054285
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00053936/tc-14-3381-2020.pdf
https://tc.copernicus.org/articles/14/3381/2020/tc-14-3381-2020.pdf
genre The Cryosphere
genre_facet The Cryosphere
op_relation The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424
https://doi.org/10.5194/tc-14-3381-2020
https://noa.gwlb.de/receive/cop_mods_00054285
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00053936/tc-14-3381-2020.pdf
https://tc.copernicus.org/articles/14/3381/2020/tc-14-3381-2020.pdf
op_rights https://creativecommons.org/licenses/by/4.0/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/tc-14-3381-2020
container_title The Cryosphere
container_volume 14
container_issue 10
container_start_page 3381
op_container_end_page 3398
_version_ 1766216691869548544