INTER-COMPARISONS AMONG PASSIVE MICROWAVE SEA ICE CONCENTRATION PRODUCTS FROM FY-3D MWRI AND AMSR2
Passive microwave (PM) sensors on satellite can monitor sea ice distribution with their strengths of daylight- and weather-independent observations. Microwave Radiation Imager (MWRI) sensor aboard on the Chinese FengYun-3D (FY-3D) satellites was launched in 2017 and provides continuous observation f...
Published in: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2020
|
Subjects: | |
Online Access: | https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-861-2020 https://noa.gwlb.de/receive/cop_mods_00053345 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00052998/isprs-archives-XLIII-B3-2020-861-2020.pdf https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/861/2020/isprs-archives-XLIII-B3-2020-861-2020.pdf |
Summary: | Passive microwave (PM) sensors on satellite can monitor sea ice distribution with their strengths of daylight- and weather-independent observations. Microwave Radiation Imager (MWRI) sensor aboard on the Chinese FengYun-3D (FY-3D) satellites was launched in 2017 and provides continuous observation for Arctic sea ice since then. In this study, sea ice concentration (SIC) product is derived from brightness temperature (TB) data of MWRI, based on an Arctic Radiation and Turbulence Interaction Study Sea Ice (ASI) dynamic tie points algorithm. Our product is inter-compared with a published MWRI SIC product by the Enhanced NASA Team (NT2) algorithm, and three Advanced Microwave Scanning Radiometer 2 (AMSR2) SIC products by the ASI, Bootstrap (BST) and NT2 algorithm. Results show that MWRI SIC are generally higher than AMSR2 SIC and the median of monthly SIC differences are larger in summer. Regional analysis indicates that the smaller differences between AMSR2 SIC and MWRI-ASI SIC occur in the higher SIC areas, and the biases are within ±5% in the Beaufort Sea, Chukchi Sea, East Siberian Sea, Canadian Archipelago Sea and Central Arctic Sea. There is the smallest SIC difference in the Central Arctic Sea with the biases of −0.77%, −0.60%, and 0.19% for AMSR2-ASI, AMSR2-BST and AMSR2-NT2, respectively. The trends of MWRI and AMSR2 sea ice extent and sea ice area are consistent with correlation coefficients all greater than 0.997. Besides, mean SIC, sea ice extent and sea ice area of MWRI-ASI are closer to those of AMSR2 than those of MWRI-NT2. |
---|