Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?

Freshwater discharge from glaciers is increasing across the Arctic in response to anthropogenic climate change, which raises questions about the potential downstream effects in the marine environment. Whilst a combination of long-term monitoring programmes and intensive Arctic field campaigns have i...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Hopwood, Mark J., Carroll, Dustin, Dunse, Thorben, Hodson, Andy, Holding, Johnna M., Iriarte, José L., Ribeiro, Sofia, Achterberg, Eric P., Cantoni, Carolina, Carlson, Daniel F., Chierici, Melissa, Clarke, Jennifer S., Cozzi, Stefano, Fransson, Agneta, Juul-Pedersen, Thomas, Winding, Mie H. S., Meire, Lorenz
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2020
Subjects:
Online Access:https://doi.org/10.5194/tc-14-1347-2020
https://noa.gwlb.de/receive/cop_mods_00051358
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00051014/tc-14-1347-2020.pdf
https://tc.copernicus.org/articles/14/1347/2020/tc-14-1347-2020.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00051358
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00051358 2023-05-15T14:36:56+02:00 Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Hopwood, Mark J. Carroll, Dustin Dunse, Thorben Hodson, Andy Holding, Johnna M. Iriarte, José L. Ribeiro, Sofia Achterberg, Eric P. Cantoni, Carolina Carlson, Daniel F. Chierici, Melissa Clarke, Jennifer S. Cozzi, Stefano Fransson, Agneta Juul-Pedersen, Thomas Winding, Mie H. S. Meire, Lorenz 2020-04 electronic https://doi.org/10.5194/tc-14-1347-2020 https://noa.gwlb.de/receive/cop_mods_00051358 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00051014/tc-14-1347-2020.pdf https://tc.copernicus.org/articles/14/1347/2020/tc-14-1347-2020.pdf eng eng Copernicus Publications The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-14-1347-2020 https://noa.gwlb.de/receive/cop_mods_00051358 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00051014/tc-14-1347-2020.pdf https://tc.copernicus.org/articles/14/1347/2020/tc-14-1347-2020.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess CC-BY article Verlagsveröffentlichung article Text doc-type:article 2020 ftnonlinearchiv https://doi.org/10.5194/tc-14-1347-2020 2022-02-08T22:36:26Z Freshwater discharge from glaciers is increasing across the Arctic in response to anthropogenic climate change, which raises questions about the potential downstream effects in the marine environment. Whilst a combination of long-term monitoring programmes and intensive Arctic field campaigns have improved our knowledge of glacier–ocean interactions in recent years, especially with respect to fjord/ocean circulation, there are extensive knowledge gaps concerning how glaciers affect marine biogeochemistry and productivity. Following two cross-cutting disciplinary International Arctic Science Committee (IASC) workshops addressing the importance of glaciers for the marine ecosystem, here we review the state of the art concerning how freshwater discharge affects the marine environment with a specific focus on marine biogeochemistry and biological productivity. Using a series of Arctic case studies (Nuup Kangerlua/Godthåbsfjord, Kongsfjorden, Kangerluarsuup Sermia/Bowdoin Fjord, Young Sound and Sermilik Fjord), the interconnected effects of freshwater discharge on fjord–shelf exchange, nutrient availability, the carbonate system, the carbon cycle and the microbial food web are investigated. Key findings are that whether the effect of glacier discharge on marine primary production is positive or negative is highly dependent on a combination of factors. These include glacier type (marine- or land-terminating), fjord–glacier geometry and the limiting resource(s) for phytoplankton growth in a specific spatio-temporal region (light, macronutrients or micronutrients). Arctic glacier fjords therefore often exhibit distinct discharge–productivity relationships, and multiple case-studies must be considered in order to understand the net effects of glacier discharge on Arctic marine ecosystems. Article in Journal/Newspaper Arctic Climate change Godthåbsfjord IASC International Arctic Science Committee Kongsfjord* Kongsfjorden Phytoplankton Sermilik The Cryosphere Niedersächsisches Online-Archiv NOA Arctic Bowdoin ENVELOPE(-69.317,-69.317,77.683,77.683) Bowdoin Fjord ENVELOPE(-68.521,-68.521,77.598,77.598) The Cryosphere 14 4 1347 1383
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Hopwood, Mark J.
Carroll, Dustin
Dunse, Thorben
Hodson, Andy
Holding, Johnna M.
Iriarte, José L.
Ribeiro, Sofia
Achterberg, Eric P.
Cantoni, Carolina
Carlson, Daniel F.
Chierici, Melissa
Clarke, Jennifer S.
Cozzi, Stefano
Fransson, Agneta
Juul-Pedersen, Thomas
Winding, Mie H. S.
Meire, Lorenz
Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?
topic_facet article
Verlagsveröffentlichung
description Freshwater discharge from glaciers is increasing across the Arctic in response to anthropogenic climate change, which raises questions about the potential downstream effects in the marine environment. Whilst a combination of long-term monitoring programmes and intensive Arctic field campaigns have improved our knowledge of glacier–ocean interactions in recent years, especially with respect to fjord/ocean circulation, there are extensive knowledge gaps concerning how glaciers affect marine biogeochemistry and productivity. Following two cross-cutting disciplinary International Arctic Science Committee (IASC) workshops addressing the importance of glaciers for the marine ecosystem, here we review the state of the art concerning how freshwater discharge affects the marine environment with a specific focus on marine biogeochemistry and biological productivity. Using a series of Arctic case studies (Nuup Kangerlua/Godthåbsfjord, Kongsfjorden, Kangerluarsuup Sermia/Bowdoin Fjord, Young Sound and Sermilik Fjord), the interconnected effects of freshwater discharge on fjord–shelf exchange, nutrient availability, the carbonate system, the carbon cycle and the microbial food web are investigated. Key findings are that whether the effect of glacier discharge on marine primary production is positive or negative is highly dependent on a combination of factors. These include glacier type (marine- or land-terminating), fjord–glacier geometry and the limiting resource(s) for phytoplankton growth in a specific spatio-temporal region (light, macronutrients or micronutrients). Arctic glacier fjords therefore often exhibit distinct discharge–productivity relationships, and multiple case-studies must be considered in order to understand the net effects of glacier discharge on Arctic marine ecosystems.
format Article in Journal/Newspaper
author Hopwood, Mark J.
Carroll, Dustin
Dunse, Thorben
Hodson, Andy
Holding, Johnna M.
Iriarte, José L.
Ribeiro, Sofia
Achterberg, Eric P.
Cantoni, Carolina
Carlson, Daniel F.
Chierici, Melissa
Clarke, Jennifer S.
Cozzi, Stefano
Fransson, Agneta
Juul-Pedersen, Thomas
Winding, Mie H. S.
Meire, Lorenz
author_facet Hopwood, Mark J.
Carroll, Dustin
Dunse, Thorben
Hodson, Andy
Holding, Johnna M.
Iriarte, José L.
Ribeiro, Sofia
Achterberg, Eric P.
Cantoni, Carolina
Carlson, Daniel F.
Chierici, Melissa
Clarke, Jennifer S.
Cozzi, Stefano
Fransson, Agneta
Juul-Pedersen, Thomas
Winding, Mie H. S.
Meire, Lorenz
author_sort Hopwood, Mark J.
title Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?
title_short Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?
title_full Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?
title_fullStr Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?
title_full_unstemmed Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?
title_sort review article: how does glacier discharge affect marine biogeochemistry and primary production in the arctic?
publisher Copernicus Publications
publishDate 2020
url https://doi.org/10.5194/tc-14-1347-2020
https://noa.gwlb.de/receive/cop_mods_00051358
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00051014/tc-14-1347-2020.pdf
https://tc.copernicus.org/articles/14/1347/2020/tc-14-1347-2020.pdf
long_lat ENVELOPE(-69.317,-69.317,77.683,77.683)
ENVELOPE(-68.521,-68.521,77.598,77.598)
geographic Arctic
Bowdoin
Bowdoin Fjord
geographic_facet Arctic
Bowdoin
Bowdoin Fjord
genre Arctic
Climate change
Godthåbsfjord
IASC
International Arctic Science Committee
Kongsfjord*
Kongsfjorden
Phytoplankton
Sermilik
The Cryosphere
genre_facet Arctic
Climate change
Godthåbsfjord
IASC
International Arctic Science Committee
Kongsfjord*
Kongsfjorden
Phytoplankton
Sermilik
The Cryosphere
op_relation The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424
https://doi.org/10.5194/tc-14-1347-2020
https://noa.gwlb.de/receive/cop_mods_00051358
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00051014/tc-14-1347-2020.pdf
https://tc.copernicus.org/articles/14/1347/2020/tc-14-1347-2020.pdf
op_rights https://creativecommons.org/licenses/by/4.0/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/tc-14-1347-2020
container_title The Cryosphere
container_volume 14
container_issue 4
container_start_page 1347
op_container_end_page 1383
_version_ 1766309456164945920