A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2
Snow albedo schemes in regional climate models often lack a sophisticated radiation penetration scheme and generally compute only a broadband albedo. Here, we present the Spectral-to-NarrOWBand ALbedo module (SNOWBAL, version 1.2) to couple effectively a spectral albedo model with a narrowband radia...
Published in: | Geoscientific Model Development |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2019
|
Subjects: | |
Online Access: | https://doi.org/10.5194/gmd-12-5157-2019 https://noa.gwlb.de/receive/cop_mods_00049760 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049379/gmd-12-5157-2019.pdf https://gmd.copernicus.org/articles/12/5157/2019/gmd-12-5157-2019.pdf |
id |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00049760 |
---|---|
record_format |
openpolar |
spelling |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00049760 2023-05-15T16:28:43+02:00 A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2 van Dalum, Christiaan T. van de Berg, Willem Jan Libois, Quentin Picard, Ghislain van den Broeke, Michiel R. 2019-12 electronic https://doi.org/10.5194/gmd-12-5157-2019 https://noa.gwlb.de/receive/cop_mods_00049760 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049379/gmd-12-5157-2019.pdf https://gmd.copernicus.org/articles/12/5157/2019/gmd-12-5157-2019.pdf eng eng Copernicus Publications Geoscientific Model Development -- http://www.bibliothek.uni-regensburg.de/ezeit/?2456725 -- http://www.geosci-model-dev.net/ -- 1991-9603 https://doi.org/10.5194/gmd-12-5157-2019 https://noa.gwlb.de/receive/cop_mods_00049760 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049379/gmd-12-5157-2019.pdf https://gmd.copernicus.org/articles/12/5157/2019/gmd-12-5157-2019.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess CC-BY article Verlagsveröffentlichung article Text doc-type:article 2019 ftnonlinearchiv https://doi.org/10.5194/gmd-12-5157-2019 2022-02-08T22:37:10Z Snow albedo schemes in regional climate models often lack a sophisticated radiation penetration scheme and generally compute only a broadband albedo. Here, we present the Spectral-to-NarrOWBand ALbedo module (SNOWBAL, version 1.2) to couple effectively a spectral albedo model with a narrowband radiation scheme. Specifically, the Two-streAm Radiative TransfEr in Snow model (TARTES) is coupled with the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS), cycle 33R1, atmospheric radiation scheme based on the Rapid Radiation Transfer Model, which is embedded in the Regional Atmospheric Climate Model version 2.3p2 (RACMO2). This coupling allows to explicitly account for the effect of clouds, water vapor, snow impurities and snow metamorphism on albedo. Firstly, we present a narrowband albedo method to project the spectral albedos of TARTES onto the 14 spectral bands of the IFS shortwave radiation scheme using a representative wavelength (RW) for each band. Using TARTES and spectral downwelling surface irradiance derived with the DIScrete Ordinate Radiative Transfer atmospheric model, we show that RWs primarily depend on the solar zenith angle (SZA), cloud content and water vapor. Secondly, we compare the TARTES narrowband albedo, using offline RACMO2 results for south Greenland, with the broadband albedo parameterizations of Gardner and Sharp (2010), currently implemented in RACMO2, and the multi-layered parameterization of Kuipers Munneke et al. (2011, PKM). The actual absence of radiation penetration in RACMO2 leads on average to a higher albedo compared with TARTES narrowband albedo. Furthermore, large differences between the TARTES narrowband albedo and PKM and RACMO2 are observed for high SZA and clear-sky conditions, and after melt events when the snowpack is very inhomogeneous. This highlights the importance of accounting for spectral albedo and radiation penetration to simulate the energy budget of the Greenland ice sheet. Article in Journal/Newspaper Greenland Ice Sheet Niedersächsisches Online-Archiv NOA Greenland Gardner ENVELOPE(65.903,65.903,-70.411,-70.411) Kuipers ENVELOPE(161.400,161.400,-77.900,-77.900) Geoscientific Model Development 12 12 5157 5175 |
institution |
Open Polar |
collection |
Niedersächsisches Online-Archiv NOA |
op_collection_id |
ftnonlinearchiv |
language |
English |
topic |
article Verlagsveröffentlichung |
spellingShingle |
article Verlagsveröffentlichung van Dalum, Christiaan T. van de Berg, Willem Jan Libois, Quentin Picard, Ghislain van den Broeke, Michiel R. A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2 |
topic_facet |
article Verlagsveröffentlichung |
description |
Snow albedo schemes in regional climate models often lack a sophisticated radiation penetration scheme and generally compute only a broadband albedo. Here, we present the Spectral-to-NarrOWBand ALbedo module (SNOWBAL, version 1.2) to couple effectively a spectral albedo model with a narrowband radiation scheme. Specifically, the Two-streAm Radiative TransfEr in Snow model (TARTES) is coupled with the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS), cycle 33R1, atmospheric radiation scheme based on the Rapid Radiation Transfer Model, which is embedded in the Regional Atmospheric Climate Model version 2.3p2 (RACMO2). This coupling allows to explicitly account for the effect of clouds, water vapor, snow impurities and snow metamorphism on albedo. Firstly, we present a narrowband albedo method to project the spectral albedos of TARTES onto the 14 spectral bands of the IFS shortwave radiation scheme using a representative wavelength (RW) for each band. Using TARTES and spectral downwelling surface irradiance derived with the DIScrete Ordinate Radiative Transfer atmospheric model, we show that RWs primarily depend on the solar zenith angle (SZA), cloud content and water vapor. Secondly, we compare the TARTES narrowband albedo, using offline RACMO2 results for south Greenland, with the broadband albedo parameterizations of Gardner and Sharp (2010), currently implemented in RACMO2, and the multi-layered parameterization of Kuipers Munneke et al. (2011, PKM). The actual absence of radiation penetration in RACMO2 leads on average to a higher albedo compared with TARTES narrowband albedo. Furthermore, large differences between the TARTES narrowband albedo and PKM and RACMO2 are observed for high SZA and clear-sky conditions, and after melt events when the snowpack is very inhomogeneous. This highlights the importance of accounting for spectral albedo and radiation penetration to simulate the energy budget of the Greenland ice sheet. |
format |
Article in Journal/Newspaper |
author |
van Dalum, Christiaan T. van de Berg, Willem Jan Libois, Quentin Picard, Ghislain van den Broeke, Michiel R. |
author_facet |
van Dalum, Christiaan T. van de Berg, Willem Jan Libois, Quentin Picard, Ghislain van den Broeke, Michiel R. |
author_sort |
van Dalum, Christiaan T. |
title |
A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2 |
title_short |
A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2 |
title_full |
A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2 |
title_fullStr |
A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2 |
title_full_unstemmed |
A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2 |
title_sort |
module to convert spectral to narrowband snow albedo for use in climate models: snowbal v1.2 |
publisher |
Copernicus Publications |
publishDate |
2019 |
url |
https://doi.org/10.5194/gmd-12-5157-2019 https://noa.gwlb.de/receive/cop_mods_00049760 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049379/gmd-12-5157-2019.pdf https://gmd.copernicus.org/articles/12/5157/2019/gmd-12-5157-2019.pdf |
long_lat |
ENVELOPE(65.903,65.903,-70.411,-70.411) ENVELOPE(161.400,161.400,-77.900,-77.900) |
geographic |
Greenland Gardner Kuipers |
geographic_facet |
Greenland Gardner Kuipers |
genre |
Greenland Ice Sheet |
genre_facet |
Greenland Ice Sheet |
op_relation |
Geoscientific Model Development -- http://www.bibliothek.uni-regensburg.de/ezeit/?2456725 -- http://www.geosci-model-dev.net/ -- 1991-9603 https://doi.org/10.5194/gmd-12-5157-2019 https://noa.gwlb.de/receive/cop_mods_00049760 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049379/gmd-12-5157-2019.pdf https://gmd.copernicus.org/articles/12/5157/2019/gmd-12-5157-2019.pdf |
op_rights |
https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.5194/gmd-12-5157-2019 |
container_title |
Geoscientific Model Development |
container_volume |
12 |
container_issue |
12 |
container_start_page |
5157 |
op_container_end_page |
5175 |
_version_ |
1766018396798844928 |