A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2

Snow albedo schemes in regional climate models often lack a sophisticated radiation penetration scheme and generally compute only a broadband albedo. Here, we present the Spectral-to-NarrOWBand ALbedo module (SNOWBAL, version 1.2) to couple effectively a spectral albedo model with a narrowband radia...

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: van Dalum, Christiaan T., van de Berg, Willem Jan, Libois, Quentin, Picard, Ghislain, van den Broeke, Michiel R.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2019
Subjects:
Online Access:https://doi.org/10.5194/gmd-12-5157-2019
https://noa.gwlb.de/receive/cop_mods_00049760
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049379/gmd-12-5157-2019.pdf
https://gmd.copernicus.org/articles/12/5157/2019/gmd-12-5157-2019.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00049760
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00049760 2023-05-15T16:28:43+02:00 A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2 van Dalum, Christiaan T. van de Berg, Willem Jan Libois, Quentin Picard, Ghislain van den Broeke, Michiel R. 2019-12 electronic https://doi.org/10.5194/gmd-12-5157-2019 https://noa.gwlb.de/receive/cop_mods_00049760 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049379/gmd-12-5157-2019.pdf https://gmd.copernicus.org/articles/12/5157/2019/gmd-12-5157-2019.pdf eng eng Copernicus Publications Geoscientific Model Development -- http://www.bibliothek.uni-regensburg.de/ezeit/?2456725 -- http://www.geosci-model-dev.net/ -- 1991-9603 https://doi.org/10.5194/gmd-12-5157-2019 https://noa.gwlb.de/receive/cop_mods_00049760 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049379/gmd-12-5157-2019.pdf https://gmd.copernicus.org/articles/12/5157/2019/gmd-12-5157-2019.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess CC-BY article Verlagsveröffentlichung article Text doc-type:article 2019 ftnonlinearchiv https://doi.org/10.5194/gmd-12-5157-2019 2022-02-08T22:37:10Z Snow albedo schemes in regional climate models often lack a sophisticated radiation penetration scheme and generally compute only a broadband albedo. Here, we present the Spectral-to-NarrOWBand ALbedo module (SNOWBAL, version 1.2) to couple effectively a spectral albedo model with a narrowband radiation scheme. Specifically, the Two-streAm Radiative TransfEr in Snow model (TARTES) is coupled with the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS), cycle 33R1, atmospheric radiation scheme based on the Rapid Radiation Transfer Model, which is embedded in the Regional Atmospheric Climate Model version 2.3p2 (RACMO2). This coupling allows to explicitly account for the effect of clouds, water vapor, snow impurities and snow metamorphism on albedo. Firstly, we present a narrowband albedo method to project the spectral albedos of TARTES onto the 14 spectral bands of the IFS shortwave radiation scheme using a representative wavelength (RW) for each band. Using TARTES and spectral downwelling surface irradiance derived with the DIScrete Ordinate Radiative Transfer atmospheric model, we show that RWs primarily depend on the solar zenith angle (SZA), cloud content and water vapor. Secondly, we compare the TARTES narrowband albedo, using offline RACMO2 results for south Greenland, with the broadband albedo parameterizations of Gardner and Sharp (2010), currently implemented in RACMO2, and the multi-layered parameterization of Kuipers Munneke et al. (2011, PKM). The actual absence of radiation penetration in RACMO2 leads on average to a higher albedo compared with TARTES narrowband albedo. Furthermore, large differences between the TARTES narrowband albedo and PKM and RACMO2 are observed for high SZA and clear-sky conditions, and after melt events when the snowpack is very inhomogeneous. This highlights the importance of accounting for spectral albedo and radiation penetration to simulate the energy budget of the Greenland ice sheet. Article in Journal/Newspaper Greenland Ice Sheet Niedersächsisches Online-Archiv NOA Greenland Gardner ENVELOPE(65.903,65.903,-70.411,-70.411) Kuipers ENVELOPE(161.400,161.400,-77.900,-77.900) Geoscientific Model Development 12 12 5157 5175
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
van Dalum, Christiaan T.
van de Berg, Willem Jan
Libois, Quentin
Picard, Ghislain
van den Broeke, Michiel R.
A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2
topic_facet article
Verlagsveröffentlichung
description Snow albedo schemes in regional climate models often lack a sophisticated radiation penetration scheme and generally compute only a broadband albedo. Here, we present the Spectral-to-NarrOWBand ALbedo module (SNOWBAL, version 1.2) to couple effectively a spectral albedo model with a narrowband radiation scheme. Specifically, the Two-streAm Radiative TransfEr in Snow model (TARTES) is coupled with the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS), cycle 33R1, atmospheric radiation scheme based on the Rapid Radiation Transfer Model, which is embedded in the Regional Atmospheric Climate Model version 2.3p2 (RACMO2). This coupling allows to explicitly account for the effect of clouds, water vapor, snow impurities and snow metamorphism on albedo. Firstly, we present a narrowband albedo method to project the spectral albedos of TARTES onto the 14 spectral bands of the IFS shortwave radiation scheme using a representative wavelength (RW) for each band. Using TARTES and spectral downwelling surface irradiance derived with the DIScrete Ordinate Radiative Transfer atmospheric model, we show that RWs primarily depend on the solar zenith angle (SZA), cloud content and water vapor. Secondly, we compare the TARTES narrowband albedo, using offline RACMO2 results for south Greenland, with the broadband albedo parameterizations of Gardner and Sharp (2010), currently implemented in RACMO2, and the multi-layered parameterization of Kuipers Munneke et al. (2011, PKM). The actual absence of radiation penetration in RACMO2 leads on average to a higher albedo compared with TARTES narrowband albedo. Furthermore, large differences between the TARTES narrowband albedo and PKM and RACMO2 are observed for high SZA and clear-sky conditions, and after melt events when the snowpack is very inhomogeneous. This highlights the importance of accounting for spectral albedo and radiation penetration to simulate the energy budget of the Greenland ice sheet.
format Article in Journal/Newspaper
author van Dalum, Christiaan T.
van de Berg, Willem Jan
Libois, Quentin
Picard, Ghislain
van den Broeke, Michiel R.
author_facet van Dalum, Christiaan T.
van de Berg, Willem Jan
Libois, Quentin
Picard, Ghislain
van den Broeke, Michiel R.
author_sort van Dalum, Christiaan T.
title A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2
title_short A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2
title_full A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2
title_fullStr A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2
title_full_unstemmed A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2
title_sort module to convert spectral to narrowband snow albedo for use in climate models: snowbal v1.2
publisher Copernicus Publications
publishDate 2019
url https://doi.org/10.5194/gmd-12-5157-2019
https://noa.gwlb.de/receive/cop_mods_00049760
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049379/gmd-12-5157-2019.pdf
https://gmd.copernicus.org/articles/12/5157/2019/gmd-12-5157-2019.pdf
long_lat ENVELOPE(65.903,65.903,-70.411,-70.411)
ENVELOPE(161.400,161.400,-77.900,-77.900)
geographic Greenland
Gardner
Kuipers
geographic_facet Greenland
Gardner
Kuipers
genre Greenland
Ice Sheet
genre_facet Greenland
Ice Sheet
op_relation Geoscientific Model Development -- http://www.bibliothek.uni-regensburg.de/ezeit/?2456725 -- http://www.geosci-model-dev.net/ -- 1991-9603
https://doi.org/10.5194/gmd-12-5157-2019
https://noa.gwlb.de/receive/cop_mods_00049760
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049379/gmd-12-5157-2019.pdf
https://gmd.copernicus.org/articles/12/5157/2019/gmd-12-5157-2019.pdf
op_rights https://creativecommons.org/licenses/by/4.0/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/gmd-12-5157-2019
container_title Geoscientific Model Development
container_volume 12
container_issue 12
container_start_page 5157
op_container_end_page 5175
_version_ 1766018396798844928