Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE

The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE) was devoted to the investigation of Saharan dust properties over the Caribbean. The campaign took place in June–July 2013. A wide set of ground-based and airborne aerosol instrumentation was deployed at the...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Toledano, Carlos, Torres, Benjamín, Velasco-Merino, Cristian, Althausen, Dietrich, Groß, Silke, Wiegner, Matthias, Weinzierl, Bernadett, Gasteiger, Josef, Ansmann, Albert, González, Ramiro, Mateos, David, Farrel, David, Müller, Thomas, Haarig, Moritz, Cachorro, Victoria E.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2019
Subjects:
Online Access:https://doi.org/10.5194/acp-19-14571-2019
https://noa.gwlb.de/receive/cop_mods_00049666
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049285/acp-19-14571-2019.pdf
https://acp.copernicus.org/articles/19/14571/2019/acp-19-14571-2019.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00049666
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00049666 2023-05-15T13:06:41+02:00 Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE Toledano, Carlos Torres, Benjamín Velasco-Merino, Cristian Althausen, Dietrich Groß, Silke Wiegner, Matthias Weinzierl, Bernadett Gasteiger, Josef Ansmann, Albert González, Ramiro Mateos, David Farrel, David Müller, Thomas Haarig, Moritz Cachorro, Victoria E. 2019-12 electronic https://doi.org/10.5194/acp-19-14571-2019 https://noa.gwlb.de/receive/cop_mods_00049666 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049285/acp-19-14571-2019.pdf https://acp.copernicus.org/articles/19/14571/2019/acp-19-14571-2019.pdf eng eng Copernicus Publications Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324 https://doi.org/10.5194/acp-19-14571-2019 https://noa.gwlb.de/receive/cop_mods_00049666 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049285/acp-19-14571-2019.pdf https://acp.copernicus.org/articles/19/14571/2019/acp-19-14571-2019.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess CC-BY article Verlagsveröffentlichung article Text doc-type:article 2019 ftnonlinearchiv https://doi.org/10.5194/acp-19-14571-2019 2022-02-08T22:37:13Z The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE) was devoted to the investigation of Saharan dust properties over the Caribbean. The campaign took place in June–July 2013. A wide set of ground-based and airborne aerosol instrumentation was deployed at the island of Barbados for a comprehensive experiment. Several sun photometers performed measurements during this campaign: two AERONET (Aerosol Robotic Network) Cimel sun photometers and the Sun and Sky Automatic Radiometer (SSARA). The sun photometers were co-located with the ground-based multi-wavelength lidars BERTHA (Backscatter Extinction lidar Ratio Temperature Humidity profiling Apparatus) and POLIS (Portable Lidar System). Aerosol properties derived from direct sun and sky radiance observations are analyzed, and a comparison with the co-located lidar and in situ data is provided. The time series of aerosol optical depth (AOD) allows identifying successive dust events with short periods in between in which the marine background conditions were observed. The moderate aerosol optical depth in the range of 0.3 to 0.6 was found during the dust periods. The sun photometer infrared channel at the 1640 nm wavelength was used in the retrieval to investigate possible improvements to aerosol size retrievals, and it was expected to have a larger sensitivity to coarse particles. The comparison between column (aerosol optical depth) and surface (dust concentration) data demonstrates the connection between the Saharan Air Layer and the boundary layer in the Caribbean region, as is shown by the synchronized detection of the successive dust events in both datasets. However the differences of size distributions derived from sun photometer data and in situ observations reveal the difficulties in carrying out a column closure study. Article in Journal/Newspaper Aerosol Robotic Network Niedersächsisches Online-Archiv NOA Atmospheric Chemistry and Physics 19 23 14571 14583
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Toledano, Carlos
Torres, Benjamín
Velasco-Merino, Cristian
Althausen, Dietrich
Groß, Silke
Wiegner, Matthias
Weinzierl, Bernadett
Gasteiger, Josef
Ansmann, Albert
González, Ramiro
Mateos, David
Farrel, David
Müller, Thomas
Haarig, Moritz
Cachorro, Victoria E.
Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE
topic_facet article
Verlagsveröffentlichung
description The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE) was devoted to the investigation of Saharan dust properties over the Caribbean. The campaign took place in June–July 2013. A wide set of ground-based and airborne aerosol instrumentation was deployed at the island of Barbados for a comprehensive experiment. Several sun photometers performed measurements during this campaign: two AERONET (Aerosol Robotic Network) Cimel sun photometers and the Sun and Sky Automatic Radiometer (SSARA). The sun photometers were co-located with the ground-based multi-wavelength lidars BERTHA (Backscatter Extinction lidar Ratio Temperature Humidity profiling Apparatus) and POLIS (Portable Lidar System). Aerosol properties derived from direct sun and sky radiance observations are analyzed, and a comparison with the co-located lidar and in situ data is provided. The time series of aerosol optical depth (AOD) allows identifying successive dust events with short periods in between in which the marine background conditions were observed. The moderate aerosol optical depth in the range of 0.3 to 0.6 was found during the dust periods. The sun photometer infrared channel at the 1640 nm wavelength was used in the retrieval to investigate possible improvements to aerosol size retrievals, and it was expected to have a larger sensitivity to coarse particles. The comparison between column (aerosol optical depth) and surface (dust concentration) data demonstrates the connection between the Saharan Air Layer and the boundary layer in the Caribbean region, as is shown by the synchronized detection of the successive dust events in both datasets. However the differences of size distributions derived from sun photometer data and in situ observations reveal the difficulties in carrying out a column closure study.
format Article in Journal/Newspaper
author Toledano, Carlos
Torres, Benjamín
Velasco-Merino, Cristian
Althausen, Dietrich
Groß, Silke
Wiegner, Matthias
Weinzierl, Bernadett
Gasteiger, Josef
Ansmann, Albert
González, Ramiro
Mateos, David
Farrel, David
Müller, Thomas
Haarig, Moritz
Cachorro, Victoria E.
author_facet Toledano, Carlos
Torres, Benjamín
Velasco-Merino, Cristian
Althausen, Dietrich
Groß, Silke
Wiegner, Matthias
Weinzierl, Bernadett
Gasteiger, Josef
Ansmann, Albert
González, Ramiro
Mateos, David
Farrel, David
Müller, Thomas
Haarig, Moritz
Cachorro, Victoria E.
author_sort Toledano, Carlos
title Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE
title_short Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE
title_full Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE
title_fullStr Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE
title_full_unstemmed Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE
title_sort sun photometer retrievals of saharan dust properties over barbados during saltrace
publisher Copernicus Publications
publishDate 2019
url https://doi.org/10.5194/acp-19-14571-2019
https://noa.gwlb.de/receive/cop_mods_00049666
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049285/acp-19-14571-2019.pdf
https://acp.copernicus.org/articles/19/14571/2019/acp-19-14571-2019.pdf
genre Aerosol Robotic Network
genre_facet Aerosol Robotic Network
op_relation Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324
https://doi.org/10.5194/acp-19-14571-2019
https://noa.gwlb.de/receive/cop_mods_00049666
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00049285/acp-19-14571-2019.pdf
https://acp.copernicus.org/articles/19/14571/2019/acp-19-14571-2019.pdf
op_rights https://creativecommons.org/licenses/by/4.0/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/acp-19-14571-2019
container_title Atmospheric Chemistry and Physics
container_volume 19
container_issue 23
container_start_page 14571
op_container_end_page 14583
_version_ 1766016292599365632