A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties

A GLObal Model of Aerosol Processes (GLOMAP) has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, c...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P., Mann, G. W.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2005
Subjects:
Online Access:https://doi.org/10.5194/acp-5-2227-2005
https://noa.gwlb.de/receive/cop_mods_00049040
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00048660/acp-5-2227-2005.pdf
https://acp.copernicus.org/articles/5/2227/2005/acp-5-2227-2005.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00049040
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00049040 2023-05-15T18:26:01+02:00 A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties Spracklen, D. V. Pringle, K. J. Carslaw, K. S. Chipperfield, M. P. Mann, G. W. 2005-08 electronic https://doi.org/10.5194/acp-5-2227-2005 https://noa.gwlb.de/receive/cop_mods_00049040 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00048660/acp-5-2227-2005.pdf https://acp.copernicus.org/articles/5/2227/2005/acp-5-2227-2005.pdf eng eng Copernicus Publications Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324 https://doi.org/10.5194/acp-5-2227-2005 https://noa.gwlb.de/receive/cop_mods_00049040 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00048660/acp-5-2227-2005.pdf https://acp.copernicus.org/articles/5/2227/2005/acp-5-2227-2005.pdf https://open-access.net/ uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2005 ftnonlinearchiv https://doi.org/10.5194/acp-5-2227-2005 2022-02-08T22:37:41Z A GLObal Model of Aerosol Processes (GLOMAP) has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, condensation, growth, coagulation, wet and dry deposition and cloud processing. We describe the results of a global simulation of sulfuric acid and sea spray aerosol. The model captures features of the aerosol size distribution that are well established from observations in the marine boundary layer and free troposphere. Modelled condensation nuclei (CN>3nm) vary between about 250–500 cm-3 in remote marine boundary layer regions and are generally in good agreement with observations. Modelled continental CN concentrations are lower than observed, which may be due to lack of some primary aerosol sources or the neglect of nucleation mechanisms other than binary homogeneous nucleation of sulfuric acid-water particles. Remote marine CN concentrations increase to around 2000–10 000 cm (at standard temperature and pressure) in the upper troposphere, which agrees with typical observed vertical profiles. Cloud condensation nuclei (CCN) at 0.2% supersaturation vary between about 1000 cm-3 in polluted regions and between 10 and 500 cm-3 in the remote marine boundary layer. New particle formation through sulfuric acid-water binary nucleation occurs predominantly in the upper troposphere, but the model results show that these particles contribute greatly to aerosol concentrations in the marine boundary layer. For this sulfur-sea salt system it is estimated that sea spray emissions account for only ~10% of CCN in the tropical marine boundary layer, but between 20 and 75% in the mid-latitude Southern Ocean. In a run with only natural sulfate and sea salt emissions the global mean surface CN concentration is more than 60% of that from a run with 1985 anthropogenic sulfur emissions, although the natural emissions comprise only 27% of total sulfur emissions. Southern hemisphere marine boundary layer CN are more than 90% natural in origin, while polluted continental CN are more than 90% anthropogenic in origin, although these numbers will change when other anthropogenic CN sources are included in the model. Article in Journal/Newspaper Southern Ocean Niedersächsisches Online-Archiv NOA Southern Ocean Atmospheric Chemistry and Physics 5 8 2227 2252
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Spracklen, D. V.
Pringle, K. J.
Carslaw, K. S.
Chipperfield, M. P.
Mann, G. W.
A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties
topic_facet article
Verlagsveröffentlichung
description A GLObal Model of Aerosol Processes (GLOMAP) has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, condensation, growth, coagulation, wet and dry deposition and cloud processing. We describe the results of a global simulation of sulfuric acid and sea spray aerosol. The model captures features of the aerosol size distribution that are well established from observations in the marine boundary layer and free troposphere. Modelled condensation nuclei (CN>3nm) vary between about 250–500 cm-3 in remote marine boundary layer regions and are generally in good agreement with observations. Modelled continental CN concentrations are lower than observed, which may be due to lack of some primary aerosol sources or the neglect of nucleation mechanisms other than binary homogeneous nucleation of sulfuric acid-water particles. Remote marine CN concentrations increase to around 2000–10 000 cm (at standard temperature and pressure) in the upper troposphere, which agrees with typical observed vertical profiles. Cloud condensation nuclei (CCN) at 0.2% supersaturation vary between about 1000 cm-3 in polluted regions and between 10 and 500 cm-3 in the remote marine boundary layer. New particle formation through sulfuric acid-water binary nucleation occurs predominantly in the upper troposphere, but the model results show that these particles contribute greatly to aerosol concentrations in the marine boundary layer. For this sulfur-sea salt system it is estimated that sea spray emissions account for only ~10% of CCN in the tropical marine boundary layer, but between 20 and 75% in the mid-latitude Southern Ocean. In a run with only natural sulfate and sea salt emissions the global mean surface CN concentration is more than 60% of that from a run with 1985 anthropogenic sulfur emissions, although the natural emissions comprise only 27% of total sulfur emissions. Southern hemisphere marine boundary layer CN are more than 90% natural in origin, while polluted continental CN are more than 90% anthropogenic in origin, although these numbers will change when other anthropogenic CN sources are included in the model.
format Article in Journal/Newspaper
author Spracklen, D. V.
Pringle, K. J.
Carslaw, K. S.
Chipperfield, M. P.
Mann, G. W.
author_facet Spracklen, D. V.
Pringle, K. J.
Carslaw, K. S.
Chipperfield, M. P.
Mann, G. W.
author_sort Spracklen, D. V.
title A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties
title_short A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties
title_full A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties
title_fullStr A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties
title_full_unstemmed A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties
title_sort global off-line model of size-resolved aerosol microphysics: i. model development and prediction of aerosol properties
publisher Copernicus Publications
publishDate 2005
url https://doi.org/10.5194/acp-5-2227-2005
https://noa.gwlb.de/receive/cop_mods_00049040
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00048660/acp-5-2227-2005.pdf
https://acp.copernicus.org/articles/5/2227/2005/acp-5-2227-2005.pdf
geographic Southern Ocean
geographic_facet Southern Ocean
genre Southern Ocean
genre_facet Southern Ocean
op_relation Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324
https://doi.org/10.5194/acp-5-2227-2005
https://noa.gwlb.de/receive/cop_mods_00049040
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00048660/acp-5-2227-2005.pdf
https://acp.copernicus.org/articles/5/2227/2005/acp-5-2227-2005.pdf
op_rights https://open-access.net/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/acp-5-2227-2005
container_title Atmospheric Chemistry and Physics
container_volume 5
container_issue 8
container_start_page 2227
op_container_end_page 2252
_version_ 1766207802320093184