Trends in stratospheric ozone profiles using functional mixed models

This paper is devoted to the modeling of altitude-dependent patterns of ozone variations over time. Umkehr ozone profiles (quarter of Umkehr layer) from 1978 to 2011 are investigated at two locations: Boulder (USA) and Arosa (Switzerland). The study consists of two statistical stages. First we appro...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Park, A., Guillas, S., Petropavlovskikh, I.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2013
Subjects:
Online Access:https://doi.org/10.5194/acp-13-11473-2013
https://noa.gwlb.de/receive/cop_mods_00045282
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044902/acp-13-11473-2013.pdf
https://acp.copernicus.org/articles/13/11473/2013/acp-13-11473-2013.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00045282
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00045282 2023-05-15T15:13:12+02:00 Trends in stratospheric ozone profiles using functional mixed models Park, A. Guillas, S. Petropavlovskikh, I. 2013-11 electronic https://doi.org/10.5194/acp-13-11473-2013 https://noa.gwlb.de/receive/cop_mods_00045282 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044902/acp-13-11473-2013.pdf https://acp.copernicus.org/articles/13/11473/2013/acp-13-11473-2013.pdf eng eng Copernicus Publications Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324 https://doi.org/10.5194/acp-13-11473-2013 https://noa.gwlb.de/receive/cop_mods_00045282 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044902/acp-13-11473-2013.pdf https://acp.copernicus.org/articles/13/11473/2013/acp-13-11473-2013.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2013 ftnonlinearchiv https://doi.org/10.5194/acp-13-11473-2013 2022-02-08T22:39:39Z This paper is devoted to the modeling of altitude-dependent patterns of ozone variations over time. Umkehr ozone profiles (quarter of Umkehr layer) from 1978 to 2011 are investigated at two locations: Boulder (USA) and Arosa (Switzerland). The study consists of two statistical stages. First we approximate ozone profiles employing an appropriate basis. To capture primary modes of ozone variations without losing essential information, a functional principal component analysis is performed. It penalizes roughness of the function and smooths excessive variations in the shape of the ozone profiles. As a result, data-driven basis functions (empirical basis functions) are obtained. The coefficients (principal component scores) corresponding to the empirical basis functions represent dominant temporal evolution in the shape of ozone profiles. We use those time series coefficients in the second statistical step to reveal the important sources of the patterns and variations in the profiles. We estimate the effects of covariates – month, year (trend), quasi-biennial oscillation, the solar cycle, the Arctic oscillation, the El Niño/Southern Oscillation cycle and the Eliassen–Palm flux – on the principal component scores of ozone profiles using additive mixed effects models. The effects are represented as smooth functions and the smooth functions are estimated by penalized regression splines. We also impose a heteroscedastic error structure that reflects the observed seasonality in the errors. The more complex error structure enables us to provide more accurate estimates of influences and trends, together with enhanced uncertainty quantification. Also, we are able to capture fine variations in the time evolution of the profiles, such as the semi-annual oscillation. We conclude by showing the trends by altitude over Boulder and Arosa, as well as for total column ozone. There are great variations in the trends across altitudes, which highlights the benefits of modeling ozone profiles. Article in Journal/Newspaper Arctic Niedersächsisches Online-Archiv NOA Arctic Atmospheric Chemistry and Physics 13 22 11473 11501
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Park, A.
Guillas, S.
Petropavlovskikh, I.
Trends in stratospheric ozone profiles using functional mixed models
topic_facet article
Verlagsveröffentlichung
description This paper is devoted to the modeling of altitude-dependent patterns of ozone variations over time. Umkehr ozone profiles (quarter of Umkehr layer) from 1978 to 2011 are investigated at two locations: Boulder (USA) and Arosa (Switzerland). The study consists of two statistical stages. First we approximate ozone profiles employing an appropriate basis. To capture primary modes of ozone variations without losing essential information, a functional principal component analysis is performed. It penalizes roughness of the function and smooths excessive variations in the shape of the ozone profiles. As a result, data-driven basis functions (empirical basis functions) are obtained. The coefficients (principal component scores) corresponding to the empirical basis functions represent dominant temporal evolution in the shape of ozone profiles. We use those time series coefficients in the second statistical step to reveal the important sources of the patterns and variations in the profiles. We estimate the effects of covariates – month, year (trend), quasi-biennial oscillation, the solar cycle, the Arctic oscillation, the El Niño/Southern Oscillation cycle and the Eliassen–Palm flux – on the principal component scores of ozone profiles using additive mixed effects models. The effects are represented as smooth functions and the smooth functions are estimated by penalized regression splines. We also impose a heteroscedastic error structure that reflects the observed seasonality in the errors. The more complex error structure enables us to provide more accurate estimates of influences and trends, together with enhanced uncertainty quantification. Also, we are able to capture fine variations in the time evolution of the profiles, such as the semi-annual oscillation. We conclude by showing the trends by altitude over Boulder and Arosa, as well as for total column ozone. There are great variations in the trends across altitudes, which highlights the benefits of modeling ozone profiles.
format Article in Journal/Newspaper
author Park, A.
Guillas, S.
Petropavlovskikh, I.
author_facet Park, A.
Guillas, S.
Petropavlovskikh, I.
author_sort Park, A.
title Trends in stratospheric ozone profiles using functional mixed models
title_short Trends in stratospheric ozone profiles using functional mixed models
title_full Trends in stratospheric ozone profiles using functional mixed models
title_fullStr Trends in stratospheric ozone profiles using functional mixed models
title_full_unstemmed Trends in stratospheric ozone profiles using functional mixed models
title_sort trends in stratospheric ozone profiles using functional mixed models
publisher Copernicus Publications
publishDate 2013
url https://doi.org/10.5194/acp-13-11473-2013
https://noa.gwlb.de/receive/cop_mods_00045282
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044902/acp-13-11473-2013.pdf
https://acp.copernicus.org/articles/13/11473/2013/acp-13-11473-2013.pdf
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_relation Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324
https://doi.org/10.5194/acp-13-11473-2013
https://noa.gwlb.de/receive/cop_mods_00045282
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044902/acp-13-11473-2013.pdf
https://acp.copernicus.org/articles/13/11473/2013/acp-13-11473-2013.pdf
op_rights uneingeschränkt
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/acp-13-11473-2013
container_title Atmospheric Chemistry and Physics
container_volume 13
container_issue 22
container_start_page 11473
op_container_end_page 11501
_version_ 1766343792504340480