Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone

To provide a theoretical framework towards a better understanding of ozone depletion events (ODEs) and atmospheric mercury depletion events (AMDEs) in the polar boundary layer, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents from poro...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Toyota, K., McConnell, J. C., Staebler, R. M., Dastoor, A. P.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2014
Subjects:
Online Access:https://doi.org/10.5194/acp-14-4101-2014
https://noa.gwlb.de/receive/cop_mods_00045051
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044671/acp-14-4101-2014.pdf
https://acp.copernicus.org/articles/14/4101/2014/acp-14-4101-2014.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00045051
record_format openpolar
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Toyota, K.
McConnell, J. C.
Staebler, R. M.
Dastoor, A. P.
Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone
topic_facet article
Verlagsveröffentlichung
description To provide a theoretical framework towards a better understanding of ozone depletion events (ODEs) and atmospheric mercury depletion events (AMDEs) in the polar boundary layer, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents from porous snowpack and through the atmospheric boundary layer (ABL) as a unified system. This paper constitutes Part 1 of the study, describing a general configuration of the model and the results of simulations related to reactive bromine release from the snowpack and ODEs during the Arctic spring. A common set of aqueous-phase reactions describes chemistry both within the liquid-like layer (LLL) on the grain surface of the snowpack and within deliquesced "haze" aerosols mainly composed of sulfate in the atmosphere. Gas-phase reactions are also represented by the same mechanism in the atmosphere and in the snowpack interstitial air (SIA). Consequently, the model attains the capacity of simulating interactions between chemistry and mass transfer that become particularly intricate near the interface between the atmosphere and the snowpack. In the SIA, reactive uptake on LLL-coated snow grains and vertical mass transfer act simultaneously on gaseous HOBr, a fraction of which enters from the atmosphere while another fraction is formed via gas-phase chemistry in the SIA itself. A "bromine explosion", by which HOBr formed in the ambient air is deposited and then converted heterogeneously to Br2, is found to be a dominant process of reactive bromine formation in the top 1 mm layer of the snowpack. Deeper in the snowpack, HOBr formed within the SIA leads to an in-snow bromine explosion, but a significant fraction of Br2 is also produced via aqueous radical chemistry in the LLL on the surface of the snow grains. These top- and deeper-layer productions of Br2 both contribute to the release of Br2 to the atmosphere, but the deeper-layer production is found to be more important for the net outflux of reactive bromine. Although ozone is removed via bromine chemistry, it is also among the key species that control both the conventional and in-snow bromine explosions. On the other hand, aqueous-phase radical chemistry initiated by photolytic OH formation in the LLL is also a significant contributor to the in-snow source of Br2 and can operate without ozone, whereas the delivery of Br2 to the atmosphere becomes much smaller after ozone is depleted. Catalytic ozone loss via bromine radical chemistry occurs more rapidly in the SIA than in the ambient air, giving rise to apparent dry deposition velocities for ozone from the air to the snow on the order of 10−3 cm s−1 during daytime. Overall, however, the depletion of ozone in the system is caused predominantly by ozone loss in the ambient air. Increasing depth of the turbulent ABL under windy conditions will delay the buildup of reactive bromine and the resultant loss of ozone, while leading to the higher column amount of BrO in the atmosphere. During the Arctic spring, if moderately saline and acidic snowpack is as prevalent as assumed in our model runs on sea ice, the shallow, stable ABL under calm weather conditions may undergo persistent ODEs without substantial contributions from blowing/drifting snow and wind-pumping mechanisms, whereas the column densities of BrO in the ABL will likely remain too low in the course of such events to be detected unambiguously by satellite nadir measurements.
format Article in Journal/Newspaper
author Toyota, K.
McConnell, J. C.
Staebler, R. M.
Dastoor, A. P.
author_facet Toyota, K.
McConnell, J. C.
Staebler, R. M.
Dastoor, A. P.
author_sort Toyota, K.
title Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone
title_short Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone
title_full Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone
title_fullStr Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone
title_full_unstemmed Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone
title_sort air–snowpack exchange of bromine, ozone and mercury in the springtime arctic simulated by the 1-d model phantas – part 1: in-snow bromine activation and its impact on ozone
publisher Copernicus Publications
publishDate 2014
url https://doi.org/10.5194/acp-14-4101-2014
https://noa.gwlb.de/receive/cop_mods_00045051
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044671/acp-14-4101-2014.pdf
https://acp.copernicus.org/articles/14/4101/2014/acp-14-4101-2014.pdf
geographic Arctic
geographic_facet Arctic
genre Arctic
Sea ice
genre_facet Arctic
Sea ice
op_relation Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324
https://doi.org/10.5194/acp-14-4101-2014
https://noa.gwlb.de/receive/cop_mods_00045051
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044671/acp-14-4101-2014.pdf
https://acp.copernicus.org/articles/14/4101/2014/acp-14-4101-2014.pdf
op_rights uneingeschränkt
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/acp-14-4101-2014
container_title Atmospheric Chemistry and Physics
container_volume 14
container_issue 8
container_start_page 4101
op_container_end_page 4133
_version_ 1766335777660207104
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00045051 2023-05-15T15:03:56+02:00 Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone Toyota, K. McConnell, J. C. Staebler, R. M. Dastoor, A. P. 2014-04 electronic https://doi.org/10.5194/acp-14-4101-2014 https://noa.gwlb.de/receive/cop_mods_00045051 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044671/acp-14-4101-2014.pdf https://acp.copernicus.org/articles/14/4101/2014/acp-14-4101-2014.pdf eng eng Copernicus Publications Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324 https://doi.org/10.5194/acp-14-4101-2014 https://noa.gwlb.de/receive/cop_mods_00045051 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044671/acp-14-4101-2014.pdf https://acp.copernicus.org/articles/14/4101/2014/acp-14-4101-2014.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2014 ftnonlinearchiv https://doi.org/10.5194/acp-14-4101-2014 2022-02-08T22:39:45Z To provide a theoretical framework towards a better understanding of ozone depletion events (ODEs) and atmospheric mercury depletion events (AMDEs) in the polar boundary layer, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents from porous snowpack and through the atmospheric boundary layer (ABL) as a unified system. This paper constitutes Part 1 of the study, describing a general configuration of the model and the results of simulations related to reactive bromine release from the snowpack and ODEs during the Arctic spring. A common set of aqueous-phase reactions describes chemistry both within the liquid-like layer (LLL) on the grain surface of the snowpack and within deliquesced "haze" aerosols mainly composed of sulfate in the atmosphere. Gas-phase reactions are also represented by the same mechanism in the atmosphere and in the snowpack interstitial air (SIA). Consequently, the model attains the capacity of simulating interactions between chemistry and mass transfer that become particularly intricate near the interface between the atmosphere and the snowpack. In the SIA, reactive uptake on LLL-coated snow grains and vertical mass transfer act simultaneously on gaseous HOBr, a fraction of which enters from the atmosphere while another fraction is formed via gas-phase chemistry in the SIA itself. A "bromine explosion", by which HOBr formed in the ambient air is deposited and then converted heterogeneously to Br2, is found to be a dominant process of reactive bromine formation in the top 1 mm layer of the snowpack. Deeper in the snowpack, HOBr formed within the SIA leads to an in-snow bromine explosion, but a significant fraction of Br2 is also produced via aqueous radical chemistry in the LLL on the surface of the snow grains. These top- and deeper-layer productions of Br2 both contribute to the release of Br2 to the atmosphere, but the deeper-layer production is found to be more important for the net outflux of reactive bromine. Although ozone is removed via bromine chemistry, it is also among the key species that control both the conventional and in-snow bromine explosions. On the other hand, aqueous-phase radical chemistry initiated by photolytic OH formation in the LLL is also a significant contributor to the in-snow source of Br2 and can operate without ozone, whereas the delivery of Br2 to the atmosphere becomes much smaller after ozone is depleted. Catalytic ozone loss via bromine radical chemistry occurs more rapidly in the SIA than in the ambient air, giving rise to apparent dry deposition velocities for ozone from the air to the snow on the order of 10−3 cm s−1 during daytime. Overall, however, the depletion of ozone in the system is caused predominantly by ozone loss in the ambient air. Increasing depth of the turbulent ABL under windy conditions will delay the buildup of reactive bromine and the resultant loss of ozone, while leading to the higher column amount of BrO in the atmosphere. During the Arctic spring, if moderately saline and acidic snowpack is as prevalent as assumed in our model runs on sea ice, the shallow, stable ABL under calm weather conditions may undergo persistent ODEs without substantial contributions from blowing/drifting snow and wind-pumping mechanisms, whereas the column densities of BrO in the ABL will likely remain too low in the course of such events to be detected unambiguously by satellite nadir measurements. Article in Journal/Newspaper Arctic Sea ice Niedersächsisches Online-Archiv NOA Arctic Atmospheric Chemistry and Physics 14 8 4101 4133