Effect of water vapor on the determination of aerosol direct radiative effect based on the AERONET fluxes

The aerosol direct radiative effect (ADRE) is defined as the change in the solar radiation flux, F, due to aerosol scattering and absorption. The difficulty in determining ADRE stems mainly from the need to estimate F without aerosols, F0, with either radiative transfer modeling and knowledge of the...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Huttunen, J., Arola, A., Myhre, G., Lindfors, A. V., Mielonen, T., Mikkonen, S., Schafer, J. S., Tripathi, S. N., Wild, M., Komppula, M., Lehtinen, K. E. J.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2014
Subjects:
Online Access:https://doi.org/10.5194/acp-14-6103-2014
https://noa.gwlb.de/receive/cop_mods_00044967
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044587/acp-14-6103-2014.pdf
https://acp.copernicus.org/articles/14/6103/2014/acp-14-6103-2014.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00044967
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00044967 2023-05-15T13:06:32+02:00 Effect of water vapor on the determination of aerosol direct radiative effect based on the AERONET fluxes Huttunen, J. Arola, A. Myhre, G. Lindfors, A. V. Mielonen, T. Mikkonen, S. Schafer, J. S. Tripathi, S. N. Wild, M. Komppula, M. Lehtinen, K. E. J. 2014-06 electronic https://doi.org/10.5194/acp-14-6103-2014 https://noa.gwlb.de/receive/cop_mods_00044967 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044587/acp-14-6103-2014.pdf https://acp.copernicus.org/articles/14/6103/2014/acp-14-6103-2014.pdf eng eng Copernicus Publications Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324 https://doi.org/10.5194/acp-14-6103-2014 https://noa.gwlb.de/receive/cop_mods_00044967 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044587/acp-14-6103-2014.pdf https://acp.copernicus.org/articles/14/6103/2014/acp-14-6103-2014.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2014 ftnonlinearchiv https://doi.org/10.5194/acp-14-6103-2014 2022-02-08T22:39:48Z The aerosol direct radiative effect (ADRE) is defined as the change in the solar radiation flux, F, due to aerosol scattering and absorption. The difficulty in determining ADRE stems mainly from the need to estimate F without aerosols, F0, with either radiative transfer modeling and knowledge of the atmospheric state, or regression analysis of radiation data down to zero aerosol optical depth (AOD), if only F and AOD are observed. This paper examines the regression analysis method by using modeled surface data products provided by the Aerosol Robotic Network (AERONET). We extrapolated F0 by two functions: a straight linear line and an exponential nonlinear decay. The exponential decay regression is expected to give a better estimation of ADRE with a few percent larger extrapolated F0 than the linear regression. We found that, contrary to the expectation, in most cases the linear regression gives better results than the nonlinear. In such cases the extrapolated F0 represents an unrealistically low water vapor column (WVC), resulting in underestimation of attenuation caused by the water vapor, and hence too large F0 and overestimation of the magnitude of ADRE. The nonlinear ADRE is generally 40–50% larger in magnitude than the linear ADRE due to the extrapolated F0 difference. Since for a majority of locations, AOD and WVC have a positive correlation, the extrapolated F0 with the nonlinear regression fit represents an unrealistically low WVC, and hence too large F0. The systematic underestimation of F0 with the linear regression is compensated by the positive correlation between AOD and water vapor, providing the better result. Article in Journal/Newspaper Aerosol Robotic Network Niedersächsisches Online-Archiv NOA Atmospheric Chemistry and Physics 14 12 6103 6110
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Huttunen, J.
Arola, A.
Myhre, G.
Lindfors, A. V.
Mielonen, T.
Mikkonen, S.
Schafer, J. S.
Tripathi, S. N.
Wild, M.
Komppula, M.
Lehtinen, K. E. J.
Effect of water vapor on the determination of aerosol direct radiative effect based on the AERONET fluxes
topic_facet article
Verlagsveröffentlichung
description The aerosol direct radiative effect (ADRE) is defined as the change in the solar radiation flux, F, due to aerosol scattering and absorption. The difficulty in determining ADRE stems mainly from the need to estimate F without aerosols, F0, with either radiative transfer modeling and knowledge of the atmospheric state, or regression analysis of radiation data down to zero aerosol optical depth (AOD), if only F and AOD are observed. This paper examines the regression analysis method by using modeled surface data products provided by the Aerosol Robotic Network (AERONET). We extrapolated F0 by two functions: a straight linear line and an exponential nonlinear decay. The exponential decay regression is expected to give a better estimation of ADRE with a few percent larger extrapolated F0 than the linear regression. We found that, contrary to the expectation, in most cases the linear regression gives better results than the nonlinear. In such cases the extrapolated F0 represents an unrealistically low water vapor column (WVC), resulting in underestimation of attenuation caused by the water vapor, and hence too large F0 and overestimation of the magnitude of ADRE. The nonlinear ADRE is generally 40–50% larger in magnitude than the linear ADRE due to the extrapolated F0 difference. Since for a majority of locations, AOD and WVC have a positive correlation, the extrapolated F0 with the nonlinear regression fit represents an unrealistically low WVC, and hence too large F0. The systematic underestimation of F0 with the linear regression is compensated by the positive correlation between AOD and water vapor, providing the better result.
format Article in Journal/Newspaper
author Huttunen, J.
Arola, A.
Myhre, G.
Lindfors, A. V.
Mielonen, T.
Mikkonen, S.
Schafer, J. S.
Tripathi, S. N.
Wild, M.
Komppula, M.
Lehtinen, K. E. J.
author_facet Huttunen, J.
Arola, A.
Myhre, G.
Lindfors, A. V.
Mielonen, T.
Mikkonen, S.
Schafer, J. S.
Tripathi, S. N.
Wild, M.
Komppula, M.
Lehtinen, K. E. J.
author_sort Huttunen, J.
title Effect of water vapor on the determination of aerosol direct radiative effect based on the AERONET fluxes
title_short Effect of water vapor on the determination of aerosol direct radiative effect based on the AERONET fluxes
title_full Effect of water vapor on the determination of aerosol direct radiative effect based on the AERONET fluxes
title_fullStr Effect of water vapor on the determination of aerosol direct radiative effect based on the AERONET fluxes
title_full_unstemmed Effect of water vapor on the determination of aerosol direct radiative effect based on the AERONET fluxes
title_sort effect of water vapor on the determination of aerosol direct radiative effect based on the aeronet fluxes
publisher Copernicus Publications
publishDate 2014
url https://doi.org/10.5194/acp-14-6103-2014
https://noa.gwlb.de/receive/cop_mods_00044967
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044587/acp-14-6103-2014.pdf
https://acp.copernicus.org/articles/14/6103/2014/acp-14-6103-2014.pdf
genre Aerosol Robotic Network
genre_facet Aerosol Robotic Network
op_relation Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324
https://doi.org/10.5194/acp-14-6103-2014
https://noa.gwlb.de/receive/cop_mods_00044967
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00044587/acp-14-6103-2014.pdf
https://acp.copernicus.org/articles/14/6103/2014/acp-14-6103-2014.pdf
op_rights uneingeschränkt
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/acp-14-6103-2014
container_title Atmospheric Chemistry and Physics
container_volume 14
container_issue 12
container_start_page 6103
op_container_end_page 6110
_version_ 1766009720830689280