Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model

We have used the Whole Atmosphere Community Climate Model (WACCM), with an updated treatment of loss processes, to determine the atmospheric lifetime of sulfur hexafluoride (SF6). The model includes the following SF6 removal processes: photolysis, electron attachment and reaction with mesospheric me...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Kovács, Tamás, Feng, Wuhu, Totterdill, Anna, Plane, John M. C., Dhomse, Sandip, Gómez-Martín, Juan Carlos, Stiller, Gabriele P., Haenel, Florian J., Smith, Christopher, Forster, Piers M., García, Rolando R., Marsh, Daniel R., Chipperfield, Martyn P.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2017
Subjects:
Online Access:https://doi.org/10.5194/acp-17-883-2017
https://noa.gwlb.de/receive/cop_mods_00042766
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00042386/acp-17-883-2017.pdf
https://acp.copernicus.org/articles/17/883/2017/acp-17-883-2017.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00042766
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00042766 2023-05-15T18:20:18+02:00 Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model Kovács, Tamás Feng, Wuhu Totterdill, Anna Plane, John M. C. Dhomse, Sandip Gómez-Martín, Juan Carlos Stiller, Gabriele P. Haenel, Florian J. Smith, Christopher Forster, Piers M. García, Rolando R. Marsh, Daniel R. Chipperfield, Martyn P. 2017-01 electronic https://doi.org/10.5194/acp-17-883-2017 https://noa.gwlb.de/receive/cop_mods_00042766 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00042386/acp-17-883-2017.pdf https://acp.copernicus.org/articles/17/883/2017/acp-17-883-2017.pdf eng eng Copernicus Publications Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324 https://doi.org/10.5194/acp-17-883-2017 https://noa.gwlb.de/receive/cop_mods_00042766 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00042386/acp-17-883-2017.pdf https://acp.copernicus.org/articles/17/883/2017/acp-17-883-2017.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2017 ftnonlinearchiv https://doi.org/10.5194/acp-17-883-2017 2022-02-08T22:40:55Z We have used the Whole Atmosphere Community Climate Model (WACCM), with an updated treatment of loss processes, to determine the atmospheric lifetime of sulfur hexafluoride (SF6). The model includes the following SF6 removal processes: photolysis, electron attachment and reaction with mesospheric metal atoms. The Sodankylä Ion Chemistry (SIC) model is incorporated into the standard version of WACCM to produce a new version with a detailed D region ion chemistry with cluster ions and negative ions. This is used to determine a latitude- and altitude-dependent scaling factor for the electron density in the standard WACCM in order to carry out multi-year SF6 simulations. The model gives a mean SF6 lifetime over an 11-year solar cycle (τ) of 1278 years (with a range from 1120 to 1475 years), which is much shorter than the currently widely used value of 3200 years, due to the larger contribution (97.4 %) of the modelled electron density to the total atmospheric loss. The loss of SF6 by reaction with mesospheric metal atoms (Na and K) is far too slow to affect the lifetime. We investigate how this shorter atmospheric lifetime impacts the use of SF6 to derive stratospheric age of air. The age of air derived from this shorter lifetime SF6 tracer is longer by 9 % in polar latitudes at 20 km compared to a passive SF6 tracer. We also present laboratory measurements of the infrared spectrum of SF6 and find good agreement with previous studies. We calculate the resulting radiative forcings and efficiencies to be, on average, very similar to those reported previously. Our values for the 20-, 100- and 500-year global warming potentials are 18 000, 23 800 and 31 300, respectively. Article in Journal/Newspaper Sodankylä Niedersächsisches Online-Archiv NOA Sodankylä ENVELOPE(26.600,26.600,67.417,67.417) Atmospheric Chemistry and Physics 17 2 883 898
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Kovács, Tamás
Feng, Wuhu
Totterdill, Anna
Plane, John M. C.
Dhomse, Sandip
Gómez-Martín, Juan Carlos
Stiller, Gabriele P.
Haenel, Florian J.
Smith, Christopher
Forster, Piers M.
García, Rolando R.
Marsh, Daniel R.
Chipperfield, Martyn P.
Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model
topic_facet article
Verlagsveröffentlichung
description We have used the Whole Atmosphere Community Climate Model (WACCM), with an updated treatment of loss processes, to determine the atmospheric lifetime of sulfur hexafluoride (SF6). The model includes the following SF6 removal processes: photolysis, electron attachment and reaction with mesospheric metal atoms. The Sodankylä Ion Chemistry (SIC) model is incorporated into the standard version of WACCM to produce a new version with a detailed D region ion chemistry with cluster ions and negative ions. This is used to determine a latitude- and altitude-dependent scaling factor for the electron density in the standard WACCM in order to carry out multi-year SF6 simulations. The model gives a mean SF6 lifetime over an 11-year solar cycle (τ) of 1278 years (with a range from 1120 to 1475 years), which is much shorter than the currently widely used value of 3200 years, due to the larger contribution (97.4 %) of the modelled electron density to the total atmospheric loss. The loss of SF6 by reaction with mesospheric metal atoms (Na and K) is far too slow to affect the lifetime. We investigate how this shorter atmospheric lifetime impacts the use of SF6 to derive stratospheric age of air. The age of air derived from this shorter lifetime SF6 tracer is longer by 9 % in polar latitudes at 20 km compared to a passive SF6 tracer. We also present laboratory measurements of the infrared spectrum of SF6 and find good agreement with previous studies. We calculate the resulting radiative forcings and efficiencies to be, on average, very similar to those reported previously. Our values for the 20-, 100- and 500-year global warming potentials are 18 000, 23 800 and 31 300, respectively.
format Article in Journal/Newspaper
author Kovács, Tamás
Feng, Wuhu
Totterdill, Anna
Plane, John M. C.
Dhomse, Sandip
Gómez-Martín, Juan Carlos
Stiller, Gabriele P.
Haenel, Florian J.
Smith, Christopher
Forster, Piers M.
García, Rolando R.
Marsh, Daniel R.
Chipperfield, Martyn P.
author_facet Kovács, Tamás
Feng, Wuhu
Totterdill, Anna
Plane, John M. C.
Dhomse, Sandip
Gómez-Martín, Juan Carlos
Stiller, Gabriele P.
Haenel, Florian J.
Smith, Christopher
Forster, Piers M.
García, Rolando R.
Marsh, Daniel R.
Chipperfield, Martyn P.
author_sort Kovács, Tamás
title Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model
title_short Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model
title_full Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model
title_fullStr Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model
title_full_unstemmed Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model
title_sort determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model
publisher Copernicus Publications
publishDate 2017
url https://doi.org/10.5194/acp-17-883-2017
https://noa.gwlb.de/receive/cop_mods_00042766
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00042386/acp-17-883-2017.pdf
https://acp.copernicus.org/articles/17/883/2017/acp-17-883-2017.pdf
long_lat ENVELOPE(26.600,26.600,67.417,67.417)
geographic Sodankylä
geographic_facet Sodankylä
genre Sodankylä
genre_facet Sodankylä
op_relation Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324
https://doi.org/10.5194/acp-17-883-2017
https://noa.gwlb.de/receive/cop_mods_00042766
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00042386/acp-17-883-2017.pdf
https://acp.copernicus.org/articles/17/883/2017/acp-17-883-2017.pdf
op_rights uneingeschränkt
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/acp-17-883-2017
container_title Atmospheric Chemistry and Physics
container_volume 17
container_issue 2
container_start_page 883
op_container_end_page 898
_version_ 1766197826455339008