Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres

N2O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of the atmospheric N2O mole fraction a...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Prokopiou, Markella, Martinerie, Patricia, Sapart, Célia J., Witrant, Emmanuel, Monteil, Guillaume, Ishijima, Kentaro, Bernard, Sophie, Kaiser, Jan, Levin, Ingeborg, Blunier, Thomas, Etheridge, David, Dlugokencky, Ed, van de Wal, Roderik S. W., Röckmann, Thomas
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2017
Subjects:
Online Access:https://doi.org/10.5194/acp-17-4539-2017
https://noa.gwlb.de/receive/cop_mods_00042507
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00042127/acp-17-4539-2017.pdf
https://acp.copernicus.org/articles/17/4539/2017/acp-17-4539-2017.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00042507
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00042507 2023-05-15T14:02:33+02:00 Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres Prokopiou, Markella Martinerie, Patricia Sapart, Célia J. Witrant, Emmanuel Monteil, Guillaume Ishijima, Kentaro Bernard, Sophie Kaiser, Jan Levin, Ingeborg Blunier, Thomas Etheridge, David Dlugokencky, Ed van de Wal, Roderik S. W. Röckmann, Thomas 2017-04 electronic https://doi.org/10.5194/acp-17-4539-2017 https://noa.gwlb.de/receive/cop_mods_00042507 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00042127/acp-17-4539-2017.pdf https://acp.copernicus.org/articles/17/4539/2017/acp-17-4539-2017.pdf eng eng Copernicus Publications Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324 https://doi.org/10.5194/acp-17-4539-2017 https://noa.gwlb.de/receive/cop_mods_00042507 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00042127/acp-17-4539-2017.pdf https://acp.copernicus.org/articles/17/4539/2017/acp-17-4539-2017.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2017 ftnonlinearchiv https://doi.org/10.5194/acp-17-4539-2017 2022-02-08T22:41:04Z N2O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of the atmospheric N2O mole fraction and isotopic composition using new and previously published firn air data collected from Greenland and Antarctica in combination with a firn diffusion and densification model. The multi-site reconstruction showed that while the global mean N2O mole fraction increased from (290 ± 1) nmol mol−1 in 1940 to (322 ± 1) nmol mol−1 in 2008, the isotopic composition of atmospheric N2O decreased by (−2.2 ± 0.2) ‰ for δ15Nav, (−1.0 ± 0.3) ‰ for δ18O, (−1.3 ± 0.6) ‰ for δ15Nα, and (−2.8 ± 0.6) ‰ for δ15Nβ over the same period. The detailed temporal evolution of the mole fraction and isotopic composition derived from the firn air model was then used in a two-box atmospheric model (comprising a stratospheric box and a tropospheric box) to infer changes in the isotopic source signature over time. The precise value of the source strength depends on the choice of the N2O lifetime, which we choose to fix at 123 years. The average isotopic composition over the investigated period is δ15Nav = (−7.6 ± 0.8) ‰ (vs. air-N2), δ18O = (32.2 ± 0.2) ‰ (vs. Vienna Standard Mean Ocean Water – VSMOW) for δ18O, δ15Nα = (−3.0 ± 1.9) ‰ and δ15Nβ = (−11.7 ± 2.3) ‰. δ15Nav, and δ15Nβ show some temporal variability, while for the other signatures the error bars of the reconstruction are too large to retrieve reliable temporal changes. Possible processes that may explain trends in 15N are discussed. The 15N site preference ( = δ15Nα − δ15Nβ) provides evidence of a shift in emissions from denitrification to nitrification, although the uncertainty envelopes are large. Article in Journal/Newspaper Antarc* Antarctica Greenland Niedersächsisches Online-Archiv NOA Greenland Atmospheric Chemistry and Physics 17 7 4539 4564
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Prokopiou, Markella
Martinerie, Patricia
Sapart, Célia J.
Witrant, Emmanuel
Monteil, Guillaume
Ishijima, Kentaro
Bernard, Sophie
Kaiser, Jan
Levin, Ingeborg
Blunier, Thomas
Etheridge, David
Dlugokencky, Ed
van de Wal, Roderik S. W.
Röckmann, Thomas
Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres
topic_facet article
Verlagsveröffentlichung
description N2O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of the atmospheric N2O mole fraction and isotopic composition using new and previously published firn air data collected from Greenland and Antarctica in combination with a firn diffusion and densification model. The multi-site reconstruction showed that while the global mean N2O mole fraction increased from (290 ± 1) nmol mol−1 in 1940 to (322 ± 1) nmol mol−1 in 2008, the isotopic composition of atmospheric N2O decreased by (−2.2 ± 0.2) ‰ for δ15Nav, (−1.0 ± 0.3) ‰ for δ18O, (−1.3 ± 0.6) ‰ for δ15Nα, and (−2.8 ± 0.6) ‰ for δ15Nβ over the same period. The detailed temporal evolution of the mole fraction and isotopic composition derived from the firn air model was then used in a two-box atmospheric model (comprising a stratospheric box and a tropospheric box) to infer changes in the isotopic source signature over time. The precise value of the source strength depends on the choice of the N2O lifetime, which we choose to fix at 123 years. The average isotopic composition over the investigated period is δ15Nav = (−7.6 ± 0.8) ‰ (vs. air-N2), δ18O = (32.2 ± 0.2) ‰ (vs. Vienna Standard Mean Ocean Water – VSMOW) for δ18O, δ15Nα = (−3.0 ± 1.9) ‰ and δ15Nβ = (−11.7 ± 2.3) ‰. δ15Nav, and δ15Nβ show some temporal variability, while for the other signatures the error bars of the reconstruction are too large to retrieve reliable temporal changes. Possible processes that may explain trends in 15N are discussed. The 15N site preference ( = δ15Nα − δ15Nβ) provides evidence of a shift in emissions from denitrification to nitrification, although the uncertainty envelopes are large.
format Article in Journal/Newspaper
author Prokopiou, Markella
Martinerie, Patricia
Sapart, Célia J.
Witrant, Emmanuel
Monteil, Guillaume
Ishijima, Kentaro
Bernard, Sophie
Kaiser, Jan
Levin, Ingeborg
Blunier, Thomas
Etheridge, David
Dlugokencky, Ed
van de Wal, Roderik S. W.
Röckmann, Thomas
author_facet Prokopiou, Markella
Martinerie, Patricia
Sapart, Célia J.
Witrant, Emmanuel
Monteil, Guillaume
Ishijima, Kentaro
Bernard, Sophie
Kaiser, Jan
Levin, Ingeborg
Blunier, Thomas
Etheridge, David
Dlugokencky, Ed
van de Wal, Roderik S. W.
Röckmann, Thomas
author_sort Prokopiou, Markella
title Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres
title_short Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres
title_full Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres
title_fullStr Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres
title_full_unstemmed Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres
title_sort constraining n2o emissions since 1940 using firn air isotope measurements in both hemispheres
publisher Copernicus Publications
publishDate 2017
url https://doi.org/10.5194/acp-17-4539-2017
https://noa.gwlb.de/receive/cop_mods_00042507
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00042127/acp-17-4539-2017.pdf
https://acp.copernicus.org/articles/17/4539/2017/acp-17-4539-2017.pdf
geographic Greenland
geographic_facet Greenland
genre Antarc*
Antarctica
Greenland
genre_facet Antarc*
Antarctica
Greenland
op_relation Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324
https://doi.org/10.5194/acp-17-4539-2017
https://noa.gwlb.de/receive/cop_mods_00042507
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00042127/acp-17-4539-2017.pdf
https://acp.copernicus.org/articles/17/4539/2017/acp-17-4539-2017.pdf
op_rights uneingeschränkt
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/acp-17-4539-2017
container_title Atmospheric Chemistry and Physics
container_volume 17
container_issue 7
container_start_page 4539
op_container_end_page 4564
_version_ 1766272859260321792