Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities

Phytoplankton community composition profoundly affects patterns of nutrient cycling and the dynamics of marine food webs; therefore predicting present and future phytoplankton community structure is crucial to understand how ocean ecosystems respond to physical forcing and nutrient limitations. We d...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Litchman, E., Klausmeier, C. A., Miller, J. R., Schofield, O. M., Falkowski, P. G.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2006
Subjects:
Online Access:https://doi.org/10.5194/bg-3-585-2006
https://noa.gwlb.de/receive/cop_mods_00032847
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00032801/bg-3-585-2006.pdf
https://bg.copernicus.org/articles/3/585/2006/bg-3-585-2006.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00032847
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00032847 2023-05-15T17:29:14+02:00 Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities Litchman, E. Klausmeier, C. A. Miller, J. R. Schofield, O. M. Falkowski, P. G. 2006-11 electronic https://doi.org/10.5194/bg-3-585-2006 https://noa.gwlb.de/receive/cop_mods_00032847 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00032801/bg-3-585-2006.pdf https://bg.copernicus.org/articles/3/585/2006/bg-3-585-2006.pdf eng eng Copernicus Publications Biogeosciences -- http://www.bibliothek.uni-regensburg.de/ezeit/?2158181 -- http://www.copernicus.org/EGU/bg/bg.html -- 1726-4189 https://doi.org/10.5194/bg-3-585-2006 https://noa.gwlb.de/receive/cop_mods_00032847 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00032801/bg-3-585-2006.pdf https://bg.copernicus.org/articles/3/585/2006/bg-3-585-2006.pdf https://open-access.net/ uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2006 ftnonlinearchiv https://doi.org/10.5194/bg-3-585-2006 2022-02-08T22:46:02Z Phytoplankton community composition profoundly affects patterns of nutrient cycling and the dynamics of marine food webs; therefore predicting present and future phytoplankton community structure is crucial to understand how ocean ecosystems respond to physical forcing and nutrient limitations. We develop a mechanistic model of phytoplankton communities that includes multiple taxonomic groups (diatoms, coccolithophores and prasinophytes), nutrients (nitrate, ammonium, phosphate, silicate and iron), light, and a generalist zooplankton grazer. Each taxonomic group was parameterized based on an extensive literature survey. We test the model at two contrasting sites in the modern ocean, the North Atlantic (North Atlantic Bloom Experiment, NABE) and subarctic North Pacific (ocean station Papa, OSP). The model successfully predicts general patterns of community composition and succession at both sites: In the North Atlantic, the model predicts a spring diatom bloom, followed by coccolithophore and prasinophyte blooms later in the season. In the North Pacific, the model reproduces the low chlorophyll community dominated by prasinophytes and coccolithophores, with low total biomass variability and high nutrient concentrations throughout the year. Sensitivity analysis revealed that the identity of the most sensitive parameters and the range of acceptable parameters differed between the two sites. We then use the model to predict community reorganization under different global change scenarios: a later onset and extended duration of stratification, with shallower mixed layer depths due to increased greenhouse gas concentrations; increase in deep water nitrogen; decrease in deep water phosphorus and increase or decrease in iron concentration. To estimate uncertainty in our predictions, we used a Monte Carlo sampling of the parameter space where future scenarios were run using parameter combinations that produced acceptable modern day outcomes and the robustness of the predictions was determined. Change in the onset and duration of stratification altered the timing and the magnitude of the spring diatom bloom in the North Atlantic and increased total phytoplankton and zooplankton biomass in the North Pacific. Changes in nutrient concentrations in some cases changed dominance patterns of major groups, as well as total chlorophyll and zooplankton biomass. Based on these scenarios, our model suggests that global environmental change will inevitably alter phytoplankton community structure and potentially impact global biogeochemical cycles. Article in Journal/Newspaper North Atlantic Subarctic Niedersächsisches Online-Archiv NOA Pacific Biogeosciences 3 4 585 606
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Litchman, E.
Klausmeier, C. A.
Miller, J. R.
Schofield, O. M.
Falkowski, P. G.
Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities
topic_facet article
Verlagsveröffentlichung
description Phytoplankton community composition profoundly affects patterns of nutrient cycling and the dynamics of marine food webs; therefore predicting present and future phytoplankton community structure is crucial to understand how ocean ecosystems respond to physical forcing and nutrient limitations. We develop a mechanistic model of phytoplankton communities that includes multiple taxonomic groups (diatoms, coccolithophores and prasinophytes), nutrients (nitrate, ammonium, phosphate, silicate and iron), light, and a generalist zooplankton grazer. Each taxonomic group was parameterized based on an extensive literature survey. We test the model at two contrasting sites in the modern ocean, the North Atlantic (North Atlantic Bloom Experiment, NABE) and subarctic North Pacific (ocean station Papa, OSP). The model successfully predicts general patterns of community composition and succession at both sites: In the North Atlantic, the model predicts a spring diatom bloom, followed by coccolithophore and prasinophyte blooms later in the season. In the North Pacific, the model reproduces the low chlorophyll community dominated by prasinophytes and coccolithophores, with low total biomass variability and high nutrient concentrations throughout the year. Sensitivity analysis revealed that the identity of the most sensitive parameters and the range of acceptable parameters differed between the two sites. We then use the model to predict community reorganization under different global change scenarios: a later onset and extended duration of stratification, with shallower mixed layer depths due to increased greenhouse gas concentrations; increase in deep water nitrogen; decrease in deep water phosphorus and increase or decrease in iron concentration. To estimate uncertainty in our predictions, we used a Monte Carlo sampling of the parameter space where future scenarios were run using parameter combinations that produced acceptable modern day outcomes and the robustness of the predictions was determined. Change in the onset and duration of stratification altered the timing and the magnitude of the spring diatom bloom in the North Atlantic and increased total phytoplankton and zooplankton biomass in the North Pacific. Changes in nutrient concentrations in some cases changed dominance patterns of major groups, as well as total chlorophyll and zooplankton biomass. Based on these scenarios, our model suggests that global environmental change will inevitably alter phytoplankton community structure and potentially impact global biogeochemical cycles.
format Article in Journal/Newspaper
author Litchman, E.
Klausmeier, C. A.
Miller, J. R.
Schofield, O. M.
Falkowski, P. G.
author_facet Litchman, E.
Klausmeier, C. A.
Miller, J. R.
Schofield, O. M.
Falkowski, P. G.
author_sort Litchman, E.
title Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities
title_short Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities
title_full Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities
title_fullStr Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities
title_full_unstemmed Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities
title_sort multi-nutrient, multi-group model of present and future oceanic phytoplankton communities
publisher Copernicus Publications
publishDate 2006
url https://doi.org/10.5194/bg-3-585-2006
https://noa.gwlb.de/receive/cop_mods_00032847
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00032801/bg-3-585-2006.pdf
https://bg.copernicus.org/articles/3/585/2006/bg-3-585-2006.pdf
geographic Pacific
geographic_facet Pacific
genre North Atlantic
Subarctic
genre_facet North Atlantic
Subarctic
op_relation Biogeosciences -- http://www.bibliothek.uni-regensburg.de/ezeit/?2158181 -- http://www.copernicus.org/EGU/bg/bg.html -- 1726-4189
https://doi.org/10.5194/bg-3-585-2006
https://noa.gwlb.de/receive/cop_mods_00032847
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00032801/bg-3-585-2006.pdf
https://bg.copernicus.org/articles/3/585/2006/bg-3-585-2006.pdf
op_rights https://open-access.net/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/bg-3-585-2006
container_title Biogeosciences
container_volume 3
container_issue 4
container_start_page 585
op_container_end_page 606
_version_ 1766122896141320192