A simple mixing explanation for late Pleistocene changes in the Pacific-South Atlantic benthic δ13C gradient
The fact that the deep-ocean benthic δ13C minimum shifted from the North Pacific to the South Atlantic during the Last Glacial Maximum is often interpretted as evidence of a change in deep water circulation, such as the development of deep water ventilation in the North Pacific or a decrease in Sout...
Published in: | Climate of the Past |
---|---|
Main Author: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2010
|
Subjects: | |
Online Access: | https://doi.org/10.5194/cp-6-305-2010 https://noa.gwlb.de/receive/cop_mods_00028954 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00028909/cp-6-305-2010.pdf https://cp.copernicus.org/articles/6/305/2010/cp-6-305-2010.pdf |
Summary: | The fact that the deep-ocean benthic δ13C minimum shifted from the North Pacific to the South Atlantic during the Last Glacial Maximum is often interpretted as evidence of a change in deep water circulation, such as the development of deep water ventilation in the North Pacific or a decrease in Southern Ocean overturning. This study re-evaluates the implications of changes in benthic δ13C gradients by comparing Pacific Deep Water (PDW) δ13C measurements with the values expected for the null hypothesis that PDW ventilation sources remained unchanged throughout the Late Pleistocene. The δ13C compositions of PDW, Northern Component Water (NCW) and Southern Component Water (SCW) are estimated from regional benthic δ13C stacks of 3–6 sites. Changes in PDW δ13C and PDW-SCW δ13C gradients over the past 800 kyr are found to be well described by a constant mixture of 60% NCW and 40% SCW plus a constant Pacific remineralization offset of −0.5‰. Thus, a change in PDW ventilation cannot be inferred solely on the basis of changes in the Pacific-South Atlantic benthic δ13C gradient. |
---|