Modelling and mapping climate change impacts on permafrost at high spatial resolution for an Arctic region with complex terrain
Most spatial modelling of climate change impacts on permafrost has been conducted at half-degree latitude/longitude or coarser spatial resolution. At such coarse resolution, topographic effects on insolation cannot be considered accurately and the results are not suitable for land-use planning and e...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2013
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-7-1121-2013 https://noa.gwlb.de/receive/cop_mods_00022284 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00022239/tc-7-1121-2013.pdf https://tc.copernicus.org/articles/7/1121/2013/tc-7-1121-2013.pdf |
id |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00022284 |
---|---|
record_format |
openpolar |
spelling |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00022284 2023-05-15T13:02:55+02:00 Modelling and mapping climate change impacts on permafrost at high spatial resolution for an Arctic region with complex terrain Zhang, Y. Wang, X. Fraser, R. Olthof, I. Chen, W. Mclennan, D. Ponomarenko, S. Wu, W. 2013-07 electronic https://doi.org/10.5194/tc-7-1121-2013 https://noa.gwlb.de/receive/cop_mods_00022284 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00022239/tc-7-1121-2013.pdf https://tc.copernicus.org/articles/7/1121/2013/tc-7-1121-2013.pdf eng eng Copernicus Publications The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-7-1121-2013 https://noa.gwlb.de/receive/cop_mods_00022284 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00022239/tc-7-1121-2013.pdf https://tc.copernicus.org/articles/7/1121/2013/tc-7-1121-2013.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2013 ftnonlinearchiv https://doi.org/10.5194/tc-7-1121-2013 2022-02-08T22:51:14Z Most spatial modelling of climate change impacts on permafrost has been conducted at half-degree latitude/longitude or coarser spatial resolution. At such coarse resolution, topographic effects on insolation cannot be considered accurately and the results are not suitable for land-use planning and ecological assessment. Here we mapped climate change impacts on permafrost from 1968 to 2100 at 10 m resolution using a process-based model for Ivvavik National Park, an Arctic region with complex terrain in northern Yukon, Canada. Soil and drainage conditions were defined based on ecosystem types, which were mapped using SPOT imagery. Leaf area indices were mapped using Landsat imagery and the ecosystem map. Climate distribution was estimated based on elevation and station observations, and the effects of topography on insolation were calculated based on slope, aspect and viewshed. To reduce computation time, we clustered climate distribution and topographic effects on insolation into discrete types. The modelled active-layer thickness and permafrost distribution were comparable with field observations and other studies. The map portrayed large variations in active-layer thickness, with ecosystem types being the most important controlling variable, followed by climate, including topographic effects on insolation. The results show deepening in active-layer thickness and progressive degradation of permafrost, although permafrost will persist in most of the park during the 21st century. This study also shows that ground conditions and climate scenarios are the major sources of uncertainty for high-resolution permafrost mapping. Article in Journal/Newspaper Active layer thickness Arctic Climate change Ivvavik national park permafrost The Cryosphere Yukon Niedersächsisches Online-Archiv NOA Arctic Canada Yukon The Cryosphere 7 4 1121 1137 |
institution |
Open Polar |
collection |
Niedersächsisches Online-Archiv NOA |
op_collection_id |
ftnonlinearchiv |
language |
English |
topic |
article Verlagsveröffentlichung |
spellingShingle |
article Verlagsveröffentlichung Zhang, Y. Wang, X. Fraser, R. Olthof, I. Chen, W. Mclennan, D. Ponomarenko, S. Wu, W. Modelling and mapping climate change impacts on permafrost at high spatial resolution for an Arctic region with complex terrain |
topic_facet |
article Verlagsveröffentlichung |
description |
Most spatial modelling of climate change impacts on permafrost has been conducted at half-degree latitude/longitude or coarser spatial resolution. At such coarse resolution, topographic effects on insolation cannot be considered accurately and the results are not suitable for land-use planning and ecological assessment. Here we mapped climate change impacts on permafrost from 1968 to 2100 at 10 m resolution using a process-based model for Ivvavik National Park, an Arctic region with complex terrain in northern Yukon, Canada. Soil and drainage conditions were defined based on ecosystem types, which were mapped using SPOT imagery. Leaf area indices were mapped using Landsat imagery and the ecosystem map. Climate distribution was estimated based on elevation and station observations, and the effects of topography on insolation were calculated based on slope, aspect and viewshed. To reduce computation time, we clustered climate distribution and topographic effects on insolation into discrete types. The modelled active-layer thickness and permafrost distribution were comparable with field observations and other studies. The map portrayed large variations in active-layer thickness, with ecosystem types being the most important controlling variable, followed by climate, including topographic effects on insolation. The results show deepening in active-layer thickness and progressive degradation of permafrost, although permafrost will persist in most of the park during the 21st century. This study also shows that ground conditions and climate scenarios are the major sources of uncertainty for high-resolution permafrost mapping. |
format |
Article in Journal/Newspaper |
author |
Zhang, Y. Wang, X. Fraser, R. Olthof, I. Chen, W. Mclennan, D. Ponomarenko, S. Wu, W. |
author_facet |
Zhang, Y. Wang, X. Fraser, R. Olthof, I. Chen, W. Mclennan, D. Ponomarenko, S. Wu, W. |
author_sort |
Zhang, Y. |
title |
Modelling and mapping climate change impacts on permafrost at high spatial resolution for an Arctic region with complex terrain |
title_short |
Modelling and mapping climate change impacts on permafrost at high spatial resolution for an Arctic region with complex terrain |
title_full |
Modelling and mapping climate change impacts on permafrost at high spatial resolution for an Arctic region with complex terrain |
title_fullStr |
Modelling and mapping climate change impacts on permafrost at high spatial resolution for an Arctic region with complex terrain |
title_full_unstemmed |
Modelling and mapping climate change impacts on permafrost at high spatial resolution for an Arctic region with complex terrain |
title_sort |
modelling and mapping climate change impacts on permafrost at high spatial resolution for an arctic region with complex terrain |
publisher |
Copernicus Publications |
publishDate |
2013 |
url |
https://doi.org/10.5194/tc-7-1121-2013 https://noa.gwlb.de/receive/cop_mods_00022284 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00022239/tc-7-1121-2013.pdf https://tc.copernicus.org/articles/7/1121/2013/tc-7-1121-2013.pdf |
geographic |
Arctic Canada Yukon |
geographic_facet |
Arctic Canada Yukon |
genre |
Active layer thickness Arctic Climate change Ivvavik national park permafrost The Cryosphere Yukon |
genre_facet |
Active layer thickness Arctic Climate change Ivvavik national park permafrost The Cryosphere Yukon |
op_relation |
The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-7-1121-2013 https://noa.gwlb.de/receive/cop_mods_00022284 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00022239/tc-7-1121-2013.pdf https://tc.copernicus.org/articles/7/1121/2013/tc-7-1121-2013.pdf |
op_rights |
uneingeschränkt info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.5194/tc-7-1121-2013 |
container_title |
The Cryosphere |
container_volume |
7 |
container_issue |
4 |
container_start_page |
1121 |
op_container_end_page |
1137 |
_version_ |
1766323915679858688 |