Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack

The broadband albedo of surface snow is determined both by the near-surface profile of the physical and chemical properties of the snowpack and by the spectral and angular characteristics of the incident solar radiation. Simultaneous measurements of the physical and chemical properties of snow were...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Carmagnola, C. M., Domine, F., Dumont, M., Wright, P., Strellis, B., Bergin, M., Dibb, J., Picard, G., Libois, Q., Arnaud, L., Morin, S.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2013
Subjects:
Online Access:https://doi.org/10.5194/tc-7-1139-2013
https://noa.gwlb.de/receive/cop_mods_00022175
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00022130/tc-7-1139-2013.pdf
https://tc.copernicus.org/articles/7/1139/2013/tc-7-1139-2013.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00022175
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00022175 2023-05-15T16:29:24+02:00 Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack Carmagnola, C. M. Domine, F. Dumont, M. Wright, P. Strellis, B. Bergin, M. Dibb, J. Picard, G. Libois, Q. Arnaud, L. Morin, S. 2013-07 electronic https://doi.org/10.5194/tc-7-1139-2013 https://noa.gwlb.de/receive/cop_mods_00022175 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00022130/tc-7-1139-2013.pdf https://tc.copernicus.org/articles/7/1139/2013/tc-7-1139-2013.pdf eng eng Copernicus Publications The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-7-1139-2013 https://noa.gwlb.de/receive/cop_mods_00022175 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00022130/tc-7-1139-2013.pdf https://tc.copernicus.org/articles/7/1139/2013/tc-7-1139-2013.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2013 ftnonlinearchiv https://doi.org/10.5194/tc-7-1139-2013 2022-02-08T22:51:17Z The broadband albedo of surface snow is determined both by the near-surface profile of the physical and chemical properties of the snowpack and by the spectral and angular characteristics of the incident solar radiation. Simultaneous measurements of the physical and chemical properties of snow were carried out at Summit Camp, Greenland (72°36´ N, 38°25´ W, 3210 m a.s.l.) in May and June 2011, along with spectral albedo measurements. One of the main objectives of the field campaign was to test our ability to predict snow spectral albedo by comparing the measured albedo to the albedo calculated with a radiative transfer model, using measured snow physical and chemical properties. To achieve this goal, we made daily measurements of the snow spectral albedo in the range 350–2200 nm and recorded snow stratigraphic information down to roughly 80 cm. The snow specific surface area (SSA) was measured using the DUFISSS instrument (DUal Frequency Integrating Sphere for Snow SSA measurement, Gallet et al., 2009). Samples were also collected for chemical analyses including black carbon (BC) and dust, to evaluate the impact of light absorbing particulate matter in snow. This is one of the most comprehensive albedo-related data sets combining chemical analysis, snow physical properties and spectral albedo measurements obtained in a polar environment. The surface albedo was calculated from density, SSA, BC and dust profiles using the DISORT model (DIScrete Ordinate Radiative Transfer, Stamnes et al., 1988) and compared to the measured values. Results indicate that the energy absorbed by the snowpack through the whole spectrum considered can be inferred within 1.10%. This accuracy is only slightly better than that which can be obtained considering pure snow, meaning that the impact of impurities on the snow albedo is small at Summit. In the near infrared, minor deviations in albedo up to 0.014 can be due to the accuracy of radiation and SSA measurements and to the surface roughness, whereas deviations up to 0.05 can be explained by the spatial heterogeneity of the snowpack at small scales, the assumption of spherical snow grains made for DISORT simulations and the vertical resolution of measurements of surface layer physical properties. At 1430 and around 1800 nm the discrepancies are larger and independent of the snow properties; we propose that they are due to errors in the ice refractive index at these wavelengths. This work contributes to the development of physically based albedo schemes in detailed snowpack models, and to the improvement of retrieval algorithms for estimating snow properties from remote sensing data. Article in Journal/Newspaper Greenland The Cryosphere Niedersächsisches Online-Archiv NOA Greenland Stamnes ENVELOPE(9.020,9.020,63.443,63.443) Summit Camp ENVELOPE(-38.453,-38.453,72.579,72.579) The Cryosphere 7 4 1139 1160
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Carmagnola, C. M.
Domine, F.
Dumont, M.
Wright, P.
Strellis, B.
Bergin, M.
Dibb, J.
Picard, G.
Libois, Q.
Arnaud, L.
Morin, S.
Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack
topic_facet article
Verlagsveröffentlichung
description The broadband albedo of surface snow is determined both by the near-surface profile of the physical and chemical properties of the snowpack and by the spectral and angular characteristics of the incident solar radiation. Simultaneous measurements of the physical and chemical properties of snow were carried out at Summit Camp, Greenland (72°36´ N, 38°25´ W, 3210 m a.s.l.) in May and June 2011, along with spectral albedo measurements. One of the main objectives of the field campaign was to test our ability to predict snow spectral albedo by comparing the measured albedo to the albedo calculated with a radiative transfer model, using measured snow physical and chemical properties. To achieve this goal, we made daily measurements of the snow spectral albedo in the range 350–2200 nm and recorded snow stratigraphic information down to roughly 80 cm. The snow specific surface area (SSA) was measured using the DUFISSS instrument (DUal Frequency Integrating Sphere for Snow SSA measurement, Gallet et al., 2009). Samples were also collected for chemical analyses including black carbon (BC) and dust, to evaluate the impact of light absorbing particulate matter in snow. This is one of the most comprehensive albedo-related data sets combining chemical analysis, snow physical properties and spectral albedo measurements obtained in a polar environment. The surface albedo was calculated from density, SSA, BC and dust profiles using the DISORT model (DIScrete Ordinate Radiative Transfer, Stamnes et al., 1988) and compared to the measured values. Results indicate that the energy absorbed by the snowpack through the whole spectrum considered can be inferred within 1.10%. This accuracy is only slightly better than that which can be obtained considering pure snow, meaning that the impact of impurities on the snow albedo is small at Summit. In the near infrared, minor deviations in albedo up to 0.014 can be due to the accuracy of radiation and SSA measurements and to the surface roughness, whereas deviations up to 0.05 can be explained by the spatial heterogeneity of the snowpack at small scales, the assumption of spherical snow grains made for DISORT simulations and the vertical resolution of measurements of surface layer physical properties. At 1430 and around 1800 nm the discrepancies are larger and independent of the snow properties; we propose that they are due to errors in the ice refractive index at these wavelengths. This work contributes to the development of physically based albedo schemes in detailed snowpack models, and to the improvement of retrieval algorithms for estimating snow properties from remote sensing data.
format Article in Journal/Newspaper
author Carmagnola, C. M.
Domine, F.
Dumont, M.
Wright, P.
Strellis, B.
Bergin, M.
Dibb, J.
Picard, G.
Libois, Q.
Arnaud, L.
Morin, S.
author_facet Carmagnola, C. M.
Domine, F.
Dumont, M.
Wright, P.
Strellis, B.
Bergin, M.
Dibb, J.
Picard, G.
Libois, Q.
Arnaud, L.
Morin, S.
author_sort Carmagnola, C. M.
title Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack
title_short Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack
title_full Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack
title_fullStr Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack
title_full_unstemmed Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack
title_sort snow spectral albedo at summit, greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack
publisher Copernicus Publications
publishDate 2013
url https://doi.org/10.5194/tc-7-1139-2013
https://noa.gwlb.de/receive/cop_mods_00022175
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00022130/tc-7-1139-2013.pdf
https://tc.copernicus.org/articles/7/1139/2013/tc-7-1139-2013.pdf
long_lat ENVELOPE(9.020,9.020,63.443,63.443)
ENVELOPE(-38.453,-38.453,72.579,72.579)
geographic Greenland
Stamnes
Summit Camp
geographic_facet Greenland
Stamnes
Summit Camp
genre Greenland
The Cryosphere
genre_facet Greenland
The Cryosphere
op_relation The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424
https://doi.org/10.5194/tc-7-1139-2013
https://noa.gwlb.de/receive/cop_mods_00022175
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00022130/tc-7-1139-2013.pdf
https://tc.copernicus.org/articles/7/1139/2013/tc-7-1139-2013.pdf
op_rights uneingeschränkt
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/tc-7-1139-2013
container_title The Cryosphere
container_volume 7
container_issue 4
container_start_page 1139
op_container_end_page 1160
_version_ 1766019098343374848